These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22246256)

  • 1. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta.
    George NT; Sponberg S; Daniel TL
    J Exp Biol; 2012 Feb; 215(Pt 3):471-9. PubMed ID: 22246256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature gradients in the flight muscles of Manduca sexta imply a spatial gradient in muscle force and energy output.
    George NT; Daniel TL
    J Exp Biol; 2011 Mar; 214(Pt 6):894-900. PubMed ID: 21346115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submaximal power output from the dorsolongitudinal flight muscles of the hawkmoth Manduca sexta.
    Tu MS; Daniel TL
    J Exp Biol; 2004 Dec; 207(Pt 26):4651-62. PubMed ID: 15579560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of in vivo power output and efficiency of Nasonia asynchronous flight muscle.
    Lehmann FO; Heymann N
    J Biotechnol; 2006 Jun; 124(1):93-107. PubMed ID: 16414139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac-like behavior of an insect flight muscle.
    Tu MS; Daniel TL
    J Exp Biol; 2004 Jun; 207(Pt 14):2455-64. PubMed ID: 15184517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contractile properties of the pigeon supracoracoideus during different modes of flight.
    Tobalske BW; Biewener AA
    J Exp Biol; 2008 Jan; 211(Pt 2):170-9. PubMed ID: 18165244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling of mechanical power output during burst escape flight in the Corvidae.
    Jackson BE; Dial KP
    J Exp Biol; 2011 Feb; 214(Pt 3):452-61. PubMed ID: 21228204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering.
    Hedrick TL; Daniel TL
    J Exp Biol; 2006 Aug; 209(Pt 16):3114-30. PubMed ID: 16888060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical power output of the pectoralis muscle of cockatiel (Nymphicus hollandicus): the in vivo muscle length trajectory and activity patterns and their implications for power modulation.
    Morris CR; Askew GN
    J Exp Biol; 2010 Aug; 213(Pt 16):2770-80. PubMed ID: 20675547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal stability and muscle efficiency in hovering orchid bees (Apidae: Euglossini).
    Borrell BJ; Medeiros MJ
    J Exp Biol; 2004 Aug; 207(Pt 17):2925-33. PubMed ID: 15277548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
    Cheng B; Deng X; Hedrick TL
    J Exp Biol; 2011 Dec; 214(Pt 24):4092-106. PubMed ID: 22116752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flight motor modulation with speed in the hawkmoth Manduca sexta.
    Hedrick TL; Martínez-Blat J; Goodman MJ
    J Insect Physiol; 2017 Jan; 96():115-121. PubMed ID: 27983942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect actuation reduces flight power requirements in
    Gau J; Gravish N; Sponberg S
    J R Soc Interface; 2019 Dec; 16(161):20190543. PubMed ID: 31847756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromuscular and biomechanical compensation for wing asymmetry in insect hovering flight.
    Fernández MJ; Springthorpe D; Hedrick TL
    J Exp Biol; 2012 Oct; 215(Pt 20):3631-8. PubMed ID: 22771747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of flight muscle power output in budgerigars Melopsittacus undulatus and zebra finches Taeniopygia guttata: in vitro muscle performance.
    Ellerby DJ; Askew GN
    J Exp Biol; 2007 Nov; 210(Pt 21):3780-8. PubMed ID: 17951419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between mechanical power requirements of flight estimated using an aerodynamic model and in vitro muscle performance in the cockatiel (Nymphicus hollandicus).
    Morris CR; Askew GN
    J Exp Biol; 2010 Aug; 213(Pt 16):2781-7. PubMed ID: 20675548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cross-bridge spring: can cool muscles store elastic energy?
    George NT; Irving TC; Williams CD; Daniel TL
    Science; 2013 Jun; 340(6137):1217-20. PubMed ID: 23618763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spatially explicit model of muscle contraction explains a relationship between activation phase, power and ATP utilization in insect flight.
    Tanner BC; Regnier M; Daniel TL
    J Exp Biol; 2008 Jan; 211(Pt 2):180-6. PubMed ID: 18165245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.