BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 22246437)

  • 1. PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2.
    Zheng S; Gray EE; Chawla G; Porse BT; O'Dell TJ; Black DL
    Nat Neurosci; 2012 Jan; 15(3):381-8, S1. PubMed ID: 22246437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors.
    Lozada AF; Wang X; Gounko NV; Massey KA; Duan J; Liu Z; Berg DK
    J Neurosci; 2012 May; 32(22):7651-61. PubMed ID: 22649244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development.
    O'Sullivan ML; de Wit J; Savas JN; Comoletti D; Otto-Hitt S; Yates JR; Ghosh A
    Neuron; 2012 Mar; 73(5):903-10. PubMed ID: 22405201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTBP-dependent PSD-95 and CamKIIα alternative splicing in the lens.
    Frederikse P; Nandanoor A; Kasinathan C
    Mol Vis; 2014; 20():1660-7. PubMed ID: 25540577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis.
    Boersma MC; Dresselhaus EC; De Biase LM; Mihalas AB; Bergles DE; Meffert MK
    J Neurosci; 2011 Apr; 31(14):5414-25. PubMed ID: 21471377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing.
    Makeyev EV; Zhang J; Carrasco MA; Maniatis T
    Mol Cell; 2007 Aug; 27(3):435-48. PubMed ID: 17679093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IκB kinase/nuclear factor κB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling.
    Schmeisser MJ; Baumann B; Johannsen S; Vindedal GF; Jensen V; Hvalby ØC; Sprengel R; Seither J; Maqbool A; Magnutzki A; Lattke M; Oswald F; Boeckers TM; Wirth T
    J Neurosci; 2012 Apr; 32(16):5688-703. PubMed ID: 22514330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of nonsense-mediated RNA decay by ER stress.
    Li Z; Vuong JK; Zhang M; Stork C; Zheng S
    RNA; 2017 Mar; 23(3):378-394. PubMed ID: 27940503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PTBP1 and PTBP2 Repress Nonconserved Cryptic Exons.
    Ling JP; Chhabra R; Merran JD; Schaughency PM; Wheelan SJ; Corden JL; Wong PC
    Cell Rep; 2016 Sep; 17(1):104-113. PubMed ID: 27681424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polypyrimidine tract binding proteins PTBP1 and PTBP2 interact with distinct proteins under splicing conditions.
    Pina JM; Hernandez LA; Keppetipola NM
    PLoS One; 2022; 17(2):e0263287. PubMed ID: 35113929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nogo receptor family restricts synapse number in the developing hippocampus.
    Wills ZP; Mandel-Brehm C; Mardinly AR; McCord AE; Giger RJ; Greenberg ME
    Neuron; 2012 Feb; 73(3):466-81. PubMed ID: 22325200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain.
    Licatalosi DD; Yano M; Fak JJ; Mele A; Grabinski SE; Zhang C; Darnell RB
    Genes Dev; 2012 Jul; 26(14):1626-42. PubMed ID: 22802532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation.
    Linares AJ; Lin CH; Damianov A; Adams KL; Novitch BG; Black DL
    Elife; 2015 Dec; 4():e09268. PubMed ID: 26705333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PTBP1 and PTBP2 Serve Both Specific and Redundant Functions in Neuronal Pre-mRNA Splicing.
    Vuong JK; Lin CH; Zhang M; Chen L; Black DL; Zheng S
    Cell Rep; 2016 Dec; 17(10):2766-2775. PubMed ID: 27926877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A broadly applicable high-throughput screening strategy identifies new regulators of Dlg4 (Psd-95) alternative splicing.
    Zheng S; Damoiseaux R; Chen L; Black DL
    Genome Res; 2013 Jun; 23(6):998-1007. PubMed ID: 23636947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of PSD-95 Depalmitoylating Enzymes.
    Yokoi N; Fukata Y; Sekiya A; Murakami T; Kobayashi K; Fukata M
    J Neurosci; 2016 Jun; 36(24):6431-44. PubMed ID: 27307232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ndfip1 is required for the development of pyramidal neuron dendrites and spines in the neocortex.
    Hammond VE; Gunnersen JM; Goh CP; Low LH; Hyakumura T; Tang MM; Britto JM; Putz U; Howitt JA; Tan SS
    Cereb Cortex; 2014 Dec; 24(12):3289-300. PubMed ID: 23897647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Myosin Va mutant mouse with disruptions in glutamate synaptic development and mature plasticity in visual cortex.
    Yoshii A; Zhao JP; Pandian S; van Zundert B; Constantine-Paton M
    J Neurosci; 2013 May; 33(19):8472-82. PubMed ID: 23658184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple determinants of splicing repression activity in the polypyrimidine tract binding proteins, PTBP1 and PTBP2.
    Keppetipola NM; Yeom KH; Hernandez AL; Bui T; Sharma S; Black DL
    RNA; 2016 Aug; 22(8):1172-80. PubMed ID: 27288314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway.
    Murata Y; Constantine-Paton M
    J Neurosci; 2013 Mar; 33(11):5040-52. PubMed ID: 23486974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.