These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 22246530)

  • 41. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio.
    Jiang Y; Xu C; Dong F; Yang Y; Jiang W; Yang S
    Metab Eng; 2009; 11(4-5):284-91. PubMed ID: 19560551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE).
    Gao X; Zhao H; Zhang G; He K; Jin Y
    Curr Microbiol; 2012 Aug; 65(2):128-32. PubMed ID: 22562601
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production.
    Xu M; Zhao J; Yu L; Yang ST
    J Biotechnol; 2017 Dec; 263():36-44. PubMed ID: 29050876
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acetone production with metabolically engineered strains of Acetobacterium woodii.
    Hoffmeister S; Gerdom M; Bengelsdorf FR; Linder S; Flüchter S; Öztürk H; Blümke W; May A; Fischer RJ; Bahl H; Dürre P
    Metab Eng; 2016 Jul; 36():37-47. PubMed ID: 26971669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coenzyme A-transferase-independent butyrate re-assimilation in Clostridium acetobutylicum-evidence from a mathematical model.
    Millat T; Voigt C; Janssen H; Cooksley CM; Winzer K; Minton NP; Bahl H; Fischer RJ; Wolkenhauer O
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9059-72. PubMed ID: 25149445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon.
    Mermelstein LD; Papoutsakis ET; Petersen DJ; Bennett GN
    Biotechnol Bioeng; 1993 Nov; 42(9):1053-60. PubMed ID: 18613233
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual function of ammonium acetate in acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.
    Li S; Zhou Y; Luo Z; Cui Y; Xu Y; Lin L; Zhao M; Guo Y; Pang Z
    Bioresour Technol; 2018 Nov; 267():319-325. PubMed ID: 30029177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production.
    Kuit W; Minton NP; López-Contreras AM; Eggink G
    Appl Microbiol Biotechnol; 2012 May; 94(3):729-41. PubMed ID: 22249720
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability.
    Qi F; Thakker C; Zhu F; Pena M; San KY; Bennett GN
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):993-1002. PubMed ID: 30141107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production.
    Lütke-Eversloh T; Bahl H
    Curr Opin Biotechnol; 2011 Oct; 22(5):634-47. PubMed ID: 21377350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An improved kinetic model for the acetone-butanol-ethanol pathway of Clostridium acetobutylicum and model-based perturbation analysis.
    Li RD; Li YY; Lu LY; Ren C; Li YX; Liu L
    BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S12. PubMed ID: 21689471
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance.
    Sillers R; Chow A; Tracy B; Papoutsakis ET
    Metab Eng; 2008 Nov; 10(6):321-32. PubMed ID: 18725313
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A New Shuttle Plasmid That Stably Replicates in Clostridium acetobutylicum.
    Lee SH; Kwon MA; Choi S; Kim S; Kim J; Shin YA; Kim KH
    J Microbiol Biotechnol; 2015 Oct; 25(10):1702-8. PubMed ID: 26032368
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium.
    Wen Z; Minton NP; Zhang Y; Li Q; Liu J; Jiang Y; Yang S
    Metab Eng; 2017 Jan; 39():38-48. PubMed ID: 27794465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition.
    Luo H; Zeng Q; Han S; Wang Z; Dong Q; Bi Y; Zhao Y
    World J Microbiol Biotechnol; 2017 Apr; 33(4):76. PubMed ID: 28337710
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum.
    Amador-Noguez D; Brasg IA; Feng XJ; Roquet N; Rabinowitz JD
    Appl Environ Microbiol; 2011 Nov; 77(22):7984-97. PubMed ID: 21948824
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs.
    Cho C; Lee SY
    Biotechnol Bioeng; 2017 Feb; 114(2):374-383. PubMed ID: 27531464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum.
    Yang Y; Lang N; Zhang L; Wu H; Jiang W; Gu Y
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):5011-5023. PubMed ID: 32242264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate.
    Noh HJ; Woo JE; Lee SY; Jang YS
    Appl Microbiol Biotechnol; 2018 Oct; 102(19):8319-8327. PubMed ID: 30076425
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased Butyrate Production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived Sugars.
    Baur ST; Markussen S; Di Bartolomeo F; Poehlein A; Baker A; Jenkinson ER; Daniel R; Wentzel A; Dürre P
    Appl Environ Microbiol; 2022 Apr; 88(7):e0241921. PubMed ID: 35311509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.