These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Acoustofluidics 11: Affinity specific extraction and sample decomplexing using continuous flow acoustophoresis. Augustsson P; Laurell T Lab Chip; 2012 Apr; 12(10):1742-52. PubMed ID: 22465997 [TBL] [Abstract][Full Text] [Related]
5. Facile microfluidic channels for acoustophoresis on a budget. Samarasekera C; Yeow JT Biomed Microdevices; 2015 Oct; 17(5):99. PubMed ID: 26354878 [TBL] [Abstract][Full Text] [Related]
6. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators. Sehgal P; Kirby BJ Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191 [TBL] [Abstract][Full Text] [Related]
7. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method. Barnkob R; Iranmanesh I; Wiklund M; Bruus H Lab Chip; 2012 Jul; 12(13):2337-44. PubMed ID: 22522812 [TBL] [Abstract][Full Text] [Related]
8. Decomplexing biofluids using microchip based acoustophoresis. Augustsson P; Persson J; Ekström S; Ohlin M; Laurell T Lab Chip; 2009 Mar; 9(6):810-8. PubMed ID: 19255663 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557 [TBL] [Abstract][Full Text] [Related]
10. Modelling for the robust design of layered resonators for ultrasonic particle manipulation. Hill M; Townsend RJ; Harris NR Ultrasonics; 2008 Nov; 48(6-7):521-8. PubMed ID: 18664398 [TBL] [Abstract][Full Text] [Related]
11. A thin-reflector microfluidic resonator for continuous-flow concentration of microorganisms: a new approach to water quality analysis using acoustofluidics. Carugo D; Octon T; Messaoudi W; Fisher AL; Carboni M; Harris NR; Hill M; Glynne-Jones P Lab Chip; 2014 Oct; 14(19):3830-42. PubMed ID: 25156072 [TBL] [Abstract][Full Text] [Related]
12. Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Bruus H; Dual J; Hawkes J; Hill M; Laurell T; Nilsson J; Radel S; Sadhal S; Wiklund M Lab Chip; 2011 Nov; 11(21):3579-80. PubMed ID: 21952310 [No Abstract] [Full Text] [Related]
13. Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators. Wiklund M Lab Chip; 2012 May; 12(11):2018-28. PubMed ID: 22562376 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic resonant cavities enable acoustophoresis on a disposable superstrate. Witte C; Reboud J; Wilson R; Cooper JM; Neale SL Lab Chip; 2014 Nov; 14(21):4277-83. PubMed ID: 25224539 [TBL] [Abstract][Full Text] [Related]
15. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications. Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383 [TBL] [Abstract][Full Text] [Related]
16. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Urbansky A; Ohlsson P; Lenshof A; Garofalo F; Scheding S; Laurell T Sci Rep; 2017 Dec; 7(1):17161. PubMed ID: 29215046 [TBL] [Abstract][Full Text] [Related]
17. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Huang H; Stratton Z; Huang Y; Huang TJ Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400 [TBL] [Abstract][Full Text] [Related]
18. Hydrogel-based reconfigurable components for microfluidic devices. Kim D; Beebe DJ Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621 [TBL] [Abstract][Full Text] [Related]
19. Planar chip device for PCR and hybridization with surface acoustic wave pump. Guttenberg Z; Muller H; Habermüller H; Geisbauer A; Pipper J; Felbel J; Kielpinski M; Scriba J; Wixforth A Lab Chip; 2005 Mar; 5(3):308-17. PubMed ID: 15726207 [TBL] [Abstract][Full Text] [Related]
20. Design of pressure-driven microfluidic networks using electric circuit analogy. Oh KW; Lee K; Ahn B; Furlani EP Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]