BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 22246569)

  • 1. Genetic evidence for the vital function of Osterix in cementogenesis.
    Cao Z; Zhang H; Zhou X; Han X; Ren Y; Gao T; Xiao Y; de Crombrugghe B; Somerman MJ; Feng JQ
    J Bone Miner Res; 2012 May; 27(5):1080-92. PubMed ID: 22246569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osterix controls cementoblast differentiation through downregulation of Wnt-signaling via enhancing DKK1 expression.
    Cao Z; Liu R; Zhang H; Liao H; Zhang Y; Hinton RJ; Feng JQ
    Int J Biol Sci; 2015; 11(3):335-44. PubMed ID: 25678852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGF-β Signaling Regulates Cementum Formation through Osterix Expression.
    Choi H; Ahn YH; Kim TH; Bae CH; Lee JC; You HK; Cho ES
    Sci Rep; 2016 May; 6():26046. PubMed ID: 27180803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonistic interactions between osterix and pyrophosphate during cementum formation.
    Choi H; Liu Y; Jeong JK; Kim TH; Cho ES
    Bone; 2019 Aug; 125():8-15. PubMed ID: 31059863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental pathways of periodontal tissue regeneration: Developmental diversities of tooth morphogenesis do also map capacity of periodontal tissue regeneration?
    Ripamonti U
    J Periodontal Res; 2019 Feb; 54(1):10-26. PubMed ID: 30207395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Reciprocal Interaction between β-Catenin and Osterix in Cementogenesis.
    Choi H; Kim TH; Yang S; Lee JC; You HK; Cho ES
    Sci Rep; 2017 Aug; 7(1):8160. PubMed ID: 28811640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.
    Foster BL; Ao M; Willoughby C; Soenjaya Y; Holm E; Lukashova L; Tran AB; Wimer HF; Zerfas PM; Nociti FH; Kantovitz KR; Quan BD; Sone ED; Goldberg HA; Somerman MJ
    Bone; 2015 Sep; 78():150-64. PubMed ID: 25963390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive stabilization of ß-catenin in the dental mesenchyme leads to excessive dentin and cementum formation.
    Kim TH; Lee JY; Baek JA; Lee JC; Yang X; Taketo MM; Jiang R; Cho ES
    Biochem Biophys Res Commun; 2011 Sep; 412(4):549-55. PubMed ID: 21854758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REV-ERBs negatively regulate mineralization of the cementoblasts.
    Fu L; Wang M; Zhu G; Zhao Z; Sun H; Cao Z; Xia H
    Biochem Biophys Res Commun; 2022 Jan; 587():9-15. PubMed ID: 34861472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fate of Osterix-expressing mesenchymal cells in dental root formation and maintenance.
    Takahashi A; Ono N; Ono W
    Orthod Craniofac Res; 2017 Jun; 20 Suppl 1(Suppl 1):39-43. PubMed ID: 28643909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium.
    Rakian A; Yang WC; Gluhak-Heinrich J; Cui Y; Harris MA; Villarreal D; Feng JQ; Macdougall M; Harris SE
    Int J Oral Sci; 2013 Jun; 5(2):75-84. PubMed ID: 23807640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sustained gene delivery of platelet-derived growth factor or its antagonist (PDGF-1308) on tissue-engineered cementum.
    Anusaksathien O; Jin Q; Zhao M; Somerman MJ; Giannobile WV
    J Periodontol; 2004 Mar; 75(3):429-40. PubMed ID: 15088882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittent parathyroid hormone (PTH) promotes cementogenesis and alleviates the catabolic effects of mechanical strain in cementoblasts.
    Li Y; Hu Z; Zhou C; Xu Y; Huang L; Wang X; Zou S
    BMC Cell Biol; 2017 Apr; 18(1):19. PubMed ID: 28427342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of β-catenin causes cementum hypoplasia by hampering cementogenic differentiation of Axin2-expressing cells.
    Ma R; Xie X; Xu C; Shi P; Wu Y; Wang J
    J Periodontal Res; 2023 Apr; 58(2):414-421. PubMed ID: 36691857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Biphasic Feature of Gli1
    Xie X; Xu C; Zhao H; Wang J; Feng JQ
    J Dent Res; 2021 Oct; 100(11):1289-1298. PubMed ID: 33853427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central role of pyrophosphate in acellular cementum formation.
    Foster BL; Nagatomo KJ; Nociti FH; Fong H; Dunn D; Tran AB; Wang W; Narisawa S; Millán JL; Somerman MJ
    PLoS One; 2012; 7(6):e38393. PubMed ID: 22675556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanical properties of Ank/Ank mutant mouse dental tissues--an animal model for studying periodontal regeneration.
    Fong H; Foster BL; Sarikaya M; Somerman MJ
    Arch Oral Biol; 2009 Jun; 54(6):570-6. PubMed ID: 19338977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous Human Periodontal Ligament-Committed Progenitor and Stem Cell Populations Exhibit a Unique Cementogenic Property Under In Vitro and In Vivo Conditions.
    Shinagawa-Ohama R; Mochizuki M; Tamaki Y; Suda N; Nakahara T
    Stem Cells Dev; 2017 May; 26(9):632-645. PubMed ID: 28136695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctive expression of extracellular matrix molecules at mRNA and protein levels during formation of cellular and acellular cementum in the rat.
    Sasano Y; Maruya Y; Sato H; Zhu JX; Takahashi I; Mizoguchi I; Kagayama M
    Histochem J; 2001 Feb; 33(2):91-9. PubMed ID: 11432645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The progressive ankylosis protein regulates cementum apposition and extracellular matrix composition.
    Foster BL; Nagatomo KJ; Bamashmous SO; Tompkins KA; Fong H; Dunn D; Chu EY; Guenther C; Kingsley DM; Rutherford RB; Somerman MJ
    Cells Tissues Organs; 2011; 194(5):382-405. PubMed ID: 21389671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.