These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 22246636)

  • 1. Electrospun hierarchical LiV3O8 nanofibers assembled from nanosheets with exposed {100} facets and their enhanced performance in aqueous lithium-ion batteries.
    Liang L; Zhou M; Xie Y
    Chem Asian J; 2012 Mar; 7(3):565-71. PubMed ID: 22246636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical protonated titanate nanostructures for lithium-ion batteries.
    Zhang Y; Tang Y; Yin S; Zeng Z; Zhang H; Li CM; Dong Z; Chen Z; Chen X
    Nanoscale; 2011 Oct; 3(10):4074-7. PubMed ID: 21853212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Cu4V2.15O9.38 micro-/nanostructures: a lithium intercalating electrode material.
    Zhou L; Cui W; Wu J; Zhao Q; Li H; Xia Y; Wang Y; Yu C
    Nanoscale; 2011 Mar; 3(3):999-1003. PubMed ID: 21132216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foamlike porous spinel Mn(x)Co(3-x)O4 material derived from Mn3[Co(CN)6]2⋅nH2O nanocubes: a highly efficient anode material for lithium batteries.
    Hu L; Zhang P; Zhong H; Zheng X; Yan N; Chen Q
    Chemistry; 2012 Nov; 18(47):15049-56. PubMed ID: 23032561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries.
    Yu H; Rui X; Tan H; Chen J; Huang X; Xu C; Liu W; Yu DY; Hng HH; Hoster HE; Yan Q
    Nanoscale; 2013 Jun; 5(11):4937-43. PubMed ID: 23629762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries.
    Li L; Seng KH; Chen Z; Guo Z; Liu HK
    Nanoscale; 2013 Mar; 5(5):1922-8. PubMed ID: 23354317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ternary Cu₂SnS₃ cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity.
    Qu B; Li H; Zhang M; Mei L; Chen L; Wang Y; Li Q; Wang T
    Nanoscale; 2011 Oct; 3(10):4389-93. PubMed ID: 21927737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries.
    Ji L; Toprakci O; Alcoutlabi M; Yao Y; Li Y; Zhang S; Guo B; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 May; 4(5):2672-9. PubMed ID: 22524417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An oil droplet template method for the synthesis of hierarchical structured Co3O4/C anodes for Li-ion batteries.
    Sun J; Liu H; Chen X; Evans DG; Yang W
    Nanoscale; 2013 Aug; 5(16):7564-71. PubMed ID: 23835539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved elevated temperature performance of Al-intercalated V(2)O(5) electrospun nanofibers for lithium-ion batteries.
    Cheah YL; Aravindan V; Madhavi S
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3270-7. PubMed ID: 22616641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries.
    Jo MR; Jung YS; Kang YM
    Nanoscale; 2012 Nov; 4(21):6870-5. PubMed ID: 23026842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material.
    Cherian CT; Sundaramurthy J; Reddy MV; Suresh Kumar P; Mani K; Pliszka D; Sow CH; Ramakrishna S; Chowdari BV
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9957-63. PubMed ID: 24099146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries.
    Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT
    Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries.
    Zhou X; Wan LJ; Guo YG
    Small; 2013 Aug; 9(16):2684-8. PubMed ID: 23463677
    [No Abstract]   [Full Text] [Related]  

  • 17. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.
    Chen Y; Lu Z; Zhou L; Mai YW; Huang H
    Nanoscale; 2012 Nov; 4(21):6800-5. PubMed ID: 23000946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries.
    Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Fe3O4@C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries.
    Wang L; Liang J; Zhu Y; Mei T; Zhang X; Yang Q; Qian Y
    Nanoscale; 2013 May; 5(9):3627-31. PubMed ID: 23519322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.