These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22246657)

  • 1. Aggregation and pH-temperature phase behavior for aggregates of an IgG2 antibody.
    Sahin E; Weiss WF; Kroetsch AM; King KR; Kessler RK; Das TK; Roberts CJ
    J Pharm Sci; 2012 May; 101(5):1678-87. PubMed ID: 22246657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms.
    Brummitt RK; Nesta DP; Chang L; Kroetsch AM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2104-19. PubMed ID: 21213307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates.
    Brummitt RK; Nesta DP; Chang L; Chase SF; Laue TM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2087-103. PubMed ID: 21213308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies.
    Sahin E; Grillo AO; Perkins MD; Roberts CJ
    J Pharm Sci; 2010 Dec; 99(12):4830-48. PubMed ID: 20821389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions.
    Brummitt RK; Nesta DP; Roberts CJ
    J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational implications of an inversed pH-dependent antibody aggregation.
    Perico N; Purtell J; Dillon TM; Ricci MS
    J Pharm Sci; 2009 Sep; 98(9):3031-42. PubMed ID: 18803243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition.
    Hari SB; Lau H; Razinkov VI; Chen S; Latypov RF
    Biochemistry; 2010 Nov; 49(43):9328-38. PubMed ID: 20843079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation of anti-streptavidin immunoglobulin gamma-1 involves Fab unfolding and competing growth pathways mediated by pH and salt concentration.
    Kim N; Remmele RL; Liu D; Razinkov VI; Fernandez EJ; Roberts CJ
    Biophys Chem; 2013 Feb; 172():26-36. PubMed ID: 23334430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of two major aggregation pathways in an IgG2 antibody.
    Van Buren N; Rehder D; Gadgil H; Matsumura M; Jacob J
    J Pharm Sci; 2009 Sep; 98(9):3013-30. PubMed ID: 18680168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life.
    Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2015; 7(1):84-95. PubMed ID: 25524268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature and osmolytes on competing degradation routes for an IgG1 antibody.
    Roberts CJ; Nesta DP; Kim N
    J Pharm Sci; 2013 Oct; 102(10):3556-66. PubMed ID: 23873602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies.
    Ionescu RM; Vlasak J; Price C; Kirchmeier M
    J Pharm Sci; 2008 Apr; 97(4):1414-26. PubMed ID: 17721938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weak protein interactions and pH- and temperature-dependent aggregation of human Fc1.
    Wu H; Truncali K; Ritchie J; Kroe-Barrett R; Singh S; Robinson AS; Roberts CJ
    MAbs; 2015; 7(6):1072-83. PubMed ID: 26267255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited aggregation behavior of β-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0.
    Guo J; Yang XQ; He XT; Wu NN; Wang JM; Gu W; Zhang YY
    J Agric Food Chem; 2012 Apr; 60(14):3782-91. PubMed ID: 22429197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of thermal unfolding and aggregation of human IgG1 Fc fragment by Hofmeister anions.
    Zhang-van Enk J; Mason BD; Yu L; Zhang L; Hamouda W; Huang G; Liu D; Remmele RL; Zhang J
    Mol Pharm; 2013 Feb; 10(2):619-30. PubMed ID: 23256580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species.
    Zheng S; Qiu D; Adams M; Li J; Mantri RV; Gandhi R
    AAPS PharmSciTech; 2017 Jan; 18(1):42-48. PubMed ID: 26340951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Protein Conformation, Apparent Solubility, and Protein-Protein Interactions on the Rates and Mechanisms of Aggregation for an IgG1Monoclonal Antibody.
    Kalonia C; Toprani V; Toth R; Wahome N; Gabel I; Middaugh CR; Volkin DB
    J Phys Chem B; 2016 Jul; 120(29):7062-75. PubMed ID: 27380437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic Unfolding and Aggregation Fingerprints of Monoclonal Antibodies Using Thermal Profiling.
    Melien R; Garidel P; Hinderberger D; Blech M
    Pharm Res; 2020 Apr; 37(4):78. PubMed ID: 32236701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetate- and Citrate-Specific Ion Effects on Unfolding and Temperature-Dependent Aggregation Rates of Anti-Streptavidin IgG1.
    Barnett GV; Razinkov VI; Kerwin BA; Hillsley A; Roberts CJ
    J Pharm Sci; 2016 Mar; 105(3):1066-73. PubMed ID: 26886346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DSF method optimization and its application in predicting protein thermal aggregation kinetics.
    Shi S; Semple A; Cheung J; Shameem M
    J Pharm Sci; 2013 Aug; 102(8):2471-83. PubMed ID: 23754479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.