BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 22246865)

  • 1. Profiling protease activities by dynamic proteomics workflows.
    Klingler D; Hardt M
    Proteomics; 2012 Feb; 12(4-5):587-96. PubMed ID: 22246865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring proteolytic processing events by quantitative mass spectrometry.
    Coradin M; Karch KR; Garcia BA
    Expert Rev Proteomics; 2017 May; 14(5):409-418. PubMed ID: 28395554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex substrate profiling by mass spectrometry for proteases.
    Rohweder PJ; Jiang Z; Hurysz BM; O'Donoghue AJ; Craik CS
    Methods Enzymol; 2023; 682():375-411. PubMed ID: 36948708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteases: Pivot Points in Functional Proteomics.
    Verhamme IM; Leonard SE; Perkins RC
    Methods Mol Biol; 2019; 1871():313-392. PubMed ID: 30276748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted degradomics in protein terminomics and protease substrate discovery.
    Savickas S; Auf dem Keller U
    Biol Chem; 2017 Dec; 399(1):47-54. PubMed ID: 28850541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TAILS proteomics reveals dynamic changes in airway proteolysis controlling protease activity and innate immunity during COPD exacerbations.
    Mallia-Milanes B; Dufour A; Philp C; Solis N; Klein T; Fischer M; Bolton CE; Shapiro S; Overall CM; Johnson SR
    Am J Physiol Lung Cell Mol Physiol; 2018 Dec; 315(6):L1003-L1014. PubMed ID: 30284925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Terminomics Strategies for Protease Substrates Profiling.
    Mintoo M; Chakravarty A; Tilvawala R
    Molecules; 2021 Aug; 26(15):. PubMed ID: 34361849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini.
    Wiita AP; Seaman JE; Wells JA
    Methods Enzymol; 2014; 544():327-58. PubMed ID: 24974296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometry-based proteomics strategies for protease cleavage site identification.
    van den Berg BH; Tholey A
    Proteomics; 2012 Feb; 12(4-5):516-29. PubMed ID: 22246699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current trends and challenges in proteomic identification of protease substrates.
    Vizovišek M; Vidmar R; Fonović M; Turk B
    Biochimie; 2016 Mar; 122():77-87. PubMed ID: 26514758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative profiling of protease specificity.
    Ratnikov BI; Cieplak P; Remacle AG; Nguyen E; Smith JW
    PLoS Comput Biol; 2021 Feb; 17(2):e1008101. PubMed ID: 33617527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling Sequence Specificity of Proteolytic Activities Using Proteome-Derived Peptide Libraries.
    Demir F; Kuppusamy M; Perrar A; Huesgen PF
    Methods Mol Biol; 2022; 2447():159-174. PubMed ID: 35583780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling of Protease Cleavage Sites by Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Chen CY; Mayer B; Schilling O
    Methods Mol Biol; 2017; 1574():197-204. PubMed ID: 28315252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.