These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 22246959)
1. A generic hierarchical screening method for the analysis of microscale refolds using an automated robotic platform. Ordidge GC; Mannall G; Liddell J; Dalby PA; Micheletti M Biotechnol Prog; 2012; 28(2):435-44. PubMed ID: 22246959 [TBL] [Abstract][Full Text] [Related]
2. Development and characterization of an automated high throughput screening method for optimization of protein refolding processes. Berg A; Oelmeier SA; Kittelmann J; Dismer F; Hubbuch J J Sep Sci; 2012 Nov; 35(22):3149-59. PubMed ID: 22821717 [TBL] [Abstract][Full Text] [Related]
3. A high-throughput protein refolding screen in 96-well format combined with design of experiments to optimize the refolding conditions. Dechavanne V; Barrillat N; Borlat F; Hermant A; Magnenat L; Paquet M; Antonsson B; Chevalet L Protein Expr Purif; 2011 Feb; 75(2):192-203. PubMed ID: 20851186 [TBL] [Abstract][Full Text] [Related]
4. Ultra scale-down of protein refold screening in microwells: challenges, solutions and application. Mannall GJ; Myers JP; Liddell J; Titchener-Hooker NJ; Dalby PA Biotechnol Bioeng; 2009 Jun; 103(2):329-40. PubMed ID: 19160381 [TBL] [Abstract][Full Text] [Related]
5. An integrated bioanalytical platform for supporting high-throughput serum protein binding screening. Zhang J; Shou WZ; Vath M; Kieltyka K; Maloney J; Elvebak L; Stewart J; Herbst J; Weller HN Rapid Commun Mass Spectrom; 2010 Dec; 24(24):3593-601. PubMed ID: 21080511 [TBL] [Abstract][Full Text] [Related]
6. Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy. Hoeltzli SD; Frieden C Biochemistry; 1996 Dec; 35(51):16843-51. PubMed ID: 8988023 [TBL] [Abstract][Full Text] [Related]
7. Adsorptive refolding of a highly disulfide-bonded inclusion body protein using anion-exchange chromatography. Chen Y; Leong SS J Chromatogr A; 2009 Jun; 1216(24):4877-86. PubMed ID: 19419725 [TBL] [Abstract][Full Text] [Related]
8. Refolding of proteins from inclusion bodies: rational design and recipes. Basu A; Li X; Leong SS Appl Microbiol Biotechnol; 2011 Oct; 92(2):241-51. PubMed ID: 21822901 [TBL] [Abstract][Full Text] [Related]
9. A critical assessment of the impact of mixing on dilution refolding. Mannall GJ; Titchener-Hooker NJ; Chase HA; Dalby PA Biotechnol Bioeng; 2006 Apr; 93(5):955-63. PubMed ID: 16353172 [TBL] [Abstract][Full Text] [Related]
10. Factors affecting protein refolding yields in a fed-batch and batch-refolding system. Mannall GJ; Titchener-Hooker NJ; Dalby PA Biotechnol Bioeng; 2007 Aug; 97(6):1523-34. PubMed ID: 17304557 [TBL] [Abstract][Full Text] [Related]
11. Smart polymer mediated purification and recovery of active proteins from inclusion bodies. Gautam S; Dubey P; Singh P; Kesavardhana S; Varadarajan R; Gupta MN J Chromatogr A; 2012 Apr; 1235():10-25. PubMed ID: 22425208 [TBL] [Abstract][Full Text] [Related]
12. Single pH buffer refolding screen for protein from inclusion bodies. Coutard B; Danchin EG; Oubelaid R; Canard B; Bignon C Protein Expr Purif; 2012 Apr; 82(2):352-9. PubMed ID: 22343064 [TBL] [Abstract][Full Text] [Related]
13. Automated protein-ligand interaction screening by mass spectrometry. Maple HJ; Garlish RA; Rigau-Roca L; Porter J; Whitcombe I; Prosser CE; Kennedy J; Henry AJ; Taylor RJ; Crump MP; Crosby J J Med Chem; 2012 Jan; 55(2):837-51. PubMed ID: 22148839 [TBL] [Abstract][Full Text] [Related]
14. Examination of a genetic algorithm for the application in high-throughput downstream process development. Treier K; Berg A; Diederich P; Lang K; Osberghaus A; Dismer F; Hubbuch J Biotechnol J; 2012 Oct; 7(10):1203-15. PubMed ID: 22700464 [TBL] [Abstract][Full Text] [Related]
15. Purification of a crystallin domain of Yersinia crystallin from inclusion bodies and its comparison to native protein from the soluble fraction. Jobby MK; Sharma Y Biomed Chromatogr; 2006 Sep; 20(9):956-63. PubMed ID: 16470515 [TBL] [Abstract][Full Text] [Related]
16. Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies. Misawa S; Kumagai I Biopolymers; 1999; 51(4):297-307. PubMed ID: 10618597 [TBL] [Abstract][Full Text] [Related]
17. Refolding single-chain antibody (scFv) using lauroyl-L-glutamate as a solubilization detergent and arginine as a refolding additive. Kudou M; Ejima D; Sato H; Yumioka R; Arakawa T; Tsumoto K Protein Expr Purif; 2011 May; 77(1):68-74. PubMed ID: 21195184 [TBL] [Abstract][Full Text] [Related]
18. [Application of a prediction model in inclusion body refolding]. Zhang T; Wang JF; Feng YY; Yang Z; Ma L; Wang XN Nan Fang Yi Ke Da Xue Xue Bao; 2009 Nov; 29(11):2156-60. PubMed ID: 19923054 [TBL] [Abstract][Full Text] [Related]
19. High-pressure refolding of disulfide-cross-linked lysozyme aggregates: thermodynamics and optimization. St John RJ; Carpenter JF; Randolph TW Biotechnol Prog; 2002; 18(3):565-71. PubMed ID: 12052074 [TBL] [Abstract][Full Text] [Related]
20. High-pressure refolding of human vascular endothelial growth factor (VEGF) recombinantly expressed in bacterial inclusion bodies: refolding optimization, and feasibility assessment. Cothran A; St John RJ; Schmelzer CH; Pizarro SA Biotechnol Prog; 2011; 27(5):1273-81. PubMed ID: 21608142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]