These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22247039)

  • 1. Red algal parasites: models for a life history evolution that leaves photosynthesis behind again and again.
    Blouin NA; Lane CE
    Bioessays; 2012 Mar; 34(3):226-35. PubMed ID: 22247039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Organelle Genomes in the Photosynthetic Red Algal Parasite Pterocladiophila hemisphaerica (Florideophyceae, Rhodophyta) Have Elevated Substitution Rates and Extreme Gene Loss in the Plastid Genome.
    Preuss M; Verbruggen H; Zuccarello GC
    J Phycol; 2020 Aug; 56(4):1006-1018. PubMed ID: 32215918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parasitism finds many solutions to the same problems in red algae (Florideophyceae, Rhodophyta).
    Freese JM; Lane CE
    Mol Biochem Parasitol; 2017 Jun; 214():105-111. PubMed ID: 28427949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Origin and evolution of parasitism in mites of the infraorder Eleutherengona (Acari: Prostigmata). Report I. Lower Raphignathae].
    Bochkov AV
    Parazitologiia; 2008; 42(5):337-59. PubMed ID: 19065835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids.
    Smith DR; Keeling PJ
    J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes.
    Chan CX; Yang EC; Banerjee T; Yoon HS; Martone PT; Estevez JM; Bhattacharya D
    Curr Biol; 2011 Feb; 21(4):328-33. PubMed ID: 21315598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red algae lose key mitochondrial genes in response to becoming parasitic.
    Hancock L; Goff L; Lane C
    Genome Biol Evol; 2010; 2():897-910. PubMed ID: 21081313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding algal genomes: tracing back the history of photosynthetic life on Earth.
    Tirichine L; Bowler C
    Plant J; 2011 Apr; 66(1):45-57. PubMed ID: 21443622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Big bang in the evolution of extant malaria parasites.
    Hayakawa T; Culleton R; Otani H; Horii T; Tanabe K
    Mol Biol Evol; 2008 Oct; 25(10):2233-9. PubMed ID: 18687771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular phylogenetics supports a clade of red algal parasites retaining native plastids: taxonomy and terminology revised.
    Salomaki ED; Lane CE
    J Phycol; 2019 Apr; 55(2):279-288. PubMed ID: 30537065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A photosynthetic alveolate closely related to apicomplexan parasites.
    Moore RB; Oborník M; Janouskovec J; Chrudimský T; Vancová M; Green DH; Wright SW; Davies NW; Bolch CJ; Heimann K; Slapeta J; Hoegh-Guldberg O; Logsdon JM; Carter DA
    Nature; 2008 Feb; 451(7181):959-63. PubMed ID: 18288187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes.
    Bittner L; Payri CE; Maneveldt GW; Couloux A; Cruaud C; de Reviers B; Le Gall L
    Mol Phylogenet Evol; 2011 Dec; 61(3):697-713. PubMed ID: 21851858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives.
    Janouškovec J; Tikhonenkov DV; Burki F; Howe AT; Kolísko M; Mylnikov AP; Keeling PJ
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10200-7. PubMed ID: 25717057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age of the last common ancestor of extant Plasmodium parasite lineages.
    Hayakawa T; Tachibana S; Hikosaka K; Arisue N; Matsui A; Horii T; Tanabe K
    Gene; 2012 Jul; 502(1):36-9. PubMed ID: 22555021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic eukaryotes unite: endosymbiosis connects the dots.
    Bhattacharya D; Yoon HS; Hackett JD
    Bioessays; 2004 Jan; 26(1):50-60. PubMed ID: 14696040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastids in parasites of humans.
    McFadden GI; Waller RF
    Bioessays; 1997 Nov; 19(11):1033-40. PubMed ID: 9394626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.