These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22247139)
1. Fine-tuned transcriptional regulation of malate operons in Enterococcus faecalis. Mortera P; Espariz M; Suárez C; Repizo G; Deutscher J; Alarcón S; Blancato V; Magni C Appl Environ Microbiol; 2012 Mar; 78(6):1936-45. PubMed ID: 22247139 [TBL] [Abstract][Full Text] [Related]
2. Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Landete JM; García-Haro L; Blasco A; Manzanares P; Berbegal C; Monedero V; Zúñiga M Appl Environ Microbiol; 2010 Jan; 76(1):84-95. PubMed ID: 19897756 [TBL] [Abstract][Full Text] [Related]
3. CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites. Suárez CA; Blancato VS; Poncet S; Deutscher J; Magni C BMC Microbiol; 2011 Oct; 11():227. PubMed ID: 21989394 [TBL] [Abstract][Full Text] [Related]
7. Enterococcus faecalis MalR acts as a repressor of the maltose operons and additionally mediates their catabolite repression via direct interaction with seryl-phosphorylated-HPr. Grand M; Blancato VS; Espariz M; Deutscher J; Pikis A; Hartke A; Magni C; Sauvageot N Mol Microbiol; 2020 Feb; 113(2):464-477. PubMed ID: 31755602 [TBL] [Abstract][Full Text] [Related]
8. Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems. Suárez C; Espariz M; Blancato VS; Magni C PLoS One; 2013; 8(10):e76170. PubMed ID: 24155893 [TBL] [Abstract][Full Text] [Related]
9. Ethanolamine Utilization and Bacterial Microcompartment Formation Are Subject to Carbon Catabolite Repression. Kaval KG; Gebbie M; Goodson JR; Cruz MR; Winkler WC; Garsin DA J Bacteriol; 2019 May; 201(10):. PubMed ID: 30833356 [TBL] [Abstract][Full Text] [Related]
10. Regulation of Mannitol Metabolism in Enterococcus faecalis and Association with Anbalagan S; Sadlon J; Weaver K J Bacteriol; 2022 May; 204(5):e0004722. PubMed ID: 35404112 [TBL] [Abstract][Full Text] [Related]
11. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Charbonnier T; Le Coq D; McGovern S; Calabre M; Delumeau O; Aymerich S; Jules M mBio; 2017 Oct; 8(5):. PubMed ID: 28974613 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose. Shiwa Y; Fujiwara H; Numaguchi M; Abdel-Rahman MA; Nabeta K; Kanesaki Y; Tashiro Y; Zendo T; Tanaka N; Fujita N; Yoshikawa H; Sonomoto K; Shimizu-Kadota M PLoS One; 2020; 15(11):e0242070. PubMed ID: 33201910 [TBL] [Abstract][Full Text] [Related]
13. Identification of malic and soluble oxaloacetate decarboxylase enzymes in Enterococcus faecalis. Espariz M; Repizo G; Blancato V; Mortera P; Alarcón S; Magni C FEBS J; 2011 Jun; 278(12):2140-51. PubMed ID: 21518252 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis Involves the GntR family transcriptional activator CitO. Blancato VS; Repizo GD; Suárez CA; Magni C J Bacteriol; 2008 Nov; 190(22):7419-30. PubMed ID: 18805984 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by ccpA. Leboeuf C; Leblanc L; Auffray Y; Hartke A J Bacteriol; 2000 Oct; 182(20):5799-806. PubMed ID: 11004180 [TBL] [Abstract][Full Text] [Related]
16. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Darbon E; Servant P; Poncet S; Deutscher J Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the gen locus involved in β-1,6-oligosaccharide utilization by Enterococcus faecalis. Grand M; Aubourg M; Pikis A; Thompson J; Deutscher J; Hartke A; Sauvageot N Mol Microbiol; 2019 Dec; 112(6):1744-1756. PubMed ID: 31529727 [TBL] [Abstract][Full Text] [Related]
18. Malic enzyme and malolactic enzyme pathways are functionally linked but independently regulated in Lactobacillus casei BL23. Landete JM; Ferrer S; Monedero V; Zúñiga M Appl Environ Microbiol; 2013 Sep; 79(18):5509-18. PubMed ID: 23835171 [TBL] [Abstract][Full Text] [Related]
19. Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses. Opsata M; Nes IF; Holo H BMC Microbiol; 2010 Aug; 10():224. PubMed ID: 20738841 [TBL] [Abstract][Full Text] [Related]
20. Carbon catabolite control of the metabolic network in Bacillus subtilis. Fujita Y Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]