These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 22247148)
1. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Rantsiou K; Dolci P; Giacosa S; Torchio F; Tofalo R; Torriani S; Suzzi G; Rolle L; Cocolin L Appl Environ Microbiol; 2012 Mar; 78(6):1987-94. PubMed ID: 22247148 [TBL] [Abstract][Full Text] [Related]
2. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations. Englezos V; Rantsiou K; Torchio F; Rolle L; Gerbi V; Cocolin L Int J Food Microbiol; 2015 Apr; 199():33-40. PubMed ID: 25625909 [TBL] [Abstract][Full Text] [Related]
3. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Magyar I; Tóth T Food Microbiol; 2011 Feb; 28(1):94-100. PubMed ID: 21056780 [TBL] [Abstract][Full Text] [Related]
4. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts. Maturano YP; Mestre MV; Kuchen B; Toro ME; Mercado LA; Vazquez F; Combina M Int J Food Microbiol; 2019 Jan; 289():40-48. PubMed ID: 30196180 [TBL] [Abstract][Full Text] [Related]
5. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301 [TBL] [Abstract][Full Text] [Related]
6. Diversity of Candida zemplinina strains from grapes and Italian wines. Tofalo R; Schirone M; Torriani S; Rantsiou K; Cocolin L; Perpetuini G; Suzzi G Food Microbiol; 2012 Feb; 29(1):18-26. PubMed ID: 22029914 [TBL] [Abstract][Full Text] [Related]
7. Occurrence and enological properties of two new non-conventional yeasts (Nakazawaea ishiwadae and Lodderomyces elongisporus) in wine fermentations. Ruiz J; Ortega N; Martín-Santamaría M; Acedo A; Marquina D; Pascual O; Rozès N; Zamora F; Santos A; Belda I Int J Food Microbiol; 2019 Sep; 305():108255. PubMed ID: 31252247 [TBL] [Abstract][Full Text] [Related]
8. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation timing. Hranilovic A; Gambetta JM; Jeffery DW; Grbin PR; Jiranek V Int J Food Microbiol; 2020 Sep; 329():108651. PubMed ID: 32512285 [TBL] [Abstract][Full Text] [Related]
9. Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine. Englezos V; Rantsiou K; Cravero F; Torchio F; Ortiz-Julien A; Gerbi V; Rolle L; Cocolin L Appl Microbiol Biotechnol; 2016 Jun; 100(12):5515-26. PubMed ID: 26960321 [TBL] [Abstract][Full Text] [Related]
10. Influence of Lachancea thermotolerans on cv. Emir wine fermentation. Balikci EK; Tanguler H; Jolly NP; Erten H Yeast; 2016 Jul; 33(7):313-21. PubMed ID: 27113383 [TBL] [Abstract][Full Text] [Related]
11. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879 [TBL] [Abstract][Full Text] [Related]
13. Saccharomyces cerevisiae-Starmerella bacillaris strains interaction modulates chemical and volatile profile in red wine mixed fermentations. Englezos V; Pollon M; Rantsiou K; Ortiz-Julien A; Botto R; Río Segade S; Giacosa S; Rolle L; Cocolin L Food Res Int; 2019 Aug; 122():392-401. PubMed ID: 31229092 [TBL] [Abstract][Full Text] [Related]
14. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae. Djordjević R; Gibson B; Sandell M; de Billerbeck GM; Bugarski B; Leskošek-Čukalović I; Vunduk J; Nikićević N; Nedović V Yeast; 2015 Jan; 32(1):271-9. PubMed ID: 25418076 [TBL] [Abstract][Full Text] [Related]
15. Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine. Tosi E; Azzolini M; Guzzo F; Zapparoli G J Appl Microbiol; 2009 Jul; 107(1):210-8. PubMed ID: 19245401 [TBL] [Abstract][Full Text] [Related]
16. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation. Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207 [TBL] [Abstract][Full Text] [Related]
17. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation. Milanovic V; Ciani M; Oro L; Comitini F Microb Cell Fact; 2012 Feb; 11():18. PubMed ID: 22305374 [TBL] [Abstract][Full Text] [Related]
18. Fermentation kinetics and chemical characterisation of vino tostado, a traditional sweet wine from Galicia (NW Spain). Cortés S; Salgado JM; Rivas B; Torrado AM; Domínguez JM J Sci Food Agric; 2010 Jan; 90(1):121-31. PubMed ID: 20355022 [TBL] [Abstract][Full Text] [Related]
19. Influence of Williopsis saturnus yeasts in combination with Saccharomyces cerevisiae on wine fermentation. Erten H; Tanguler H Lett Appl Microbiol; 2010 May; 50(5):474-9. PubMed ID: 20214731 [TBL] [Abstract][Full Text] [Related]
20. The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments. Masneuf-Pomarede I; Juquin E; Miot-Sertier C; Renault P; Laizet Y; Salin F; Alexandre H; Capozzi V; Cocolin L; Colonna-Ceccaldi B; Englezos V; Girard P; Gonzalez B; Lucas P; Mas A; Nisiotou A; Sipiczki M; Spano G; Tassou C; Bely M; Albertin W FEMS Yeast Res; 2015 Aug; 15(5):fov045. PubMed ID: 26071435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]