These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 22247271)
1. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Vargas WA; Martín JM; Rech GE; Rivera LP; Benito EP; Díaz-Mínguez JM; Thon MR; Sukno SA Plant Physiol; 2012 Mar; 158(3):1342-58. PubMed ID: 22247271 [TBL] [Abstract][Full Text] [Related]
2. Attenuation of PAMP-triggered immunity in maize requires down-regulation of the key β-1,6-glucan synthesis genes KRE5 and KRE6 in biotrophic hyphae of Colletotrichum graminicola. Oliveira-Garcia E; Deising HB Plant J; 2016 Aug; 87(4):355-75. PubMed ID: 27144995 [TBL] [Abstract][Full Text] [Related]
3. Infection structure-specific expression of β-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of β-glucan-triggered immunity in maize. Oliveira-Garcia E; Deising HB Plant Cell; 2013 Jun; 25(6):2356-78. PubMed ID: 23898035 [TBL] [Abstract][Full Text] [Related]
4. An adequate Fe nutritional status of maize suppresses infection and biotrophic growth of Colletotrichum graminicola. Ye F; Albarouki E; Lingam B; Deising HB; von Wirén N Physiol Plant; 2014 Jul; 151(3):280-92. PubMed ID: 24512386 [TBL] [Abstract][Full Text] [Related]
6. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. Torres MF; Ghaffari N; Buiate EA; Moore N; Schwartz S; Johnson CD; Vaillancourt LJ BMC Genomics; 2016 Mar; 17():202. PubMed ID: 26956617 [TBL] [Abstract][Full Text] [Related]
7. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Sanz-Martín JM; Pacheco-Arjona JR; Bello-Rico V; Vargas WA; Monod M; Díaz-Mínguez JM; Thon MR; Sukno SA Mol Plant Pathol; 2016 Sep; 17(7):1048-62. PubMed ID: 26619206 [TBL] [Abstract][Full Text] [Related]
8. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola. Albarouki E; Deising HB Mol Plant Microbe Interact; 2013 Jun; 26(6):695-708. PubMed ID: 23639025 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a diffusible factor that induces susceptibility in the Colletotrichum-maize disease interaction. Torres MF; Cuadros DF; Vaillancourt LJ Mol Plant Pathol; 2014 Jan; 15(1):80-93. PubMed ID: 24003973 [TBL] [Abstract][Full Text] [Related]
10. Plant immunity suppression by an β-1,3-glucanase of the maize anthracnose pathogen Colletotrichum graminicola. Gu X; Cao Z; Li Z; Yu H; Liu W BMC Plant Biol; 2024 Apr; 24(1):339. PubMed ID: 38671375 [TBL] [Abstract][Full Text] [Related]
11. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. Voitsik AM; Muench S; Deising HB; Voll LM BMC Plant Biol; 2013 May; 13():85. PubMed ID: 23718541 [TBL] [Abstract][Full Text] [Related]
12. Colletotrichum orbiculare WHI2, a Yeast Stress-Response Regulator Homolog, Controls the Biotrophic Stage of Hemibiotrophic Infection Through TOR Signaling. Harata K; Nishiuchi T; Kubo Y Mol Plant Microbe Interact; 2016 Jun; 29(6):468-83. PubMed ID: 27018615 [TBL] [Abstract][Full Text] [Related]
13. Biotrophy-specific downregulation of siderophore biosynthesis in Colletotrichum graminicola is required for modulation of immune responses of maize. Albarouki E; Schafferer L; Ye F; von Wirén N; Haas H; Deising HB Mol Microbiol; 2014 Apr; 92(2):338-55. PubMed ID: 24674132 [TBL] [Abstract][Full Text] [Related]
14. Two genes in a pathogenicity gene cluster encoding secreted proteins are required for appressorial penetration and infection of the maize anthracnose fungus Colletotrichum graminicola. Eisermann I; Weihmann F; Krijger JJ; Kröling C; Hause G; Menzel M; Pienkny S; Kiesow A; Deising HB; Wirsel SGR Environ Microbiol; 2019 Dec; 21(12):4773-4791. PubMed ID: 31599055 [TBL] [Abstract][Full Text] [Related]
15. The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola. de Oliveira Silva A; Fernando Devasahayam BR; Aliyeva-Schnorr L; Glienke C; Deising HB Fungal Genet Biol; 2024 Mar; 171():103876. PubMed ID: 38367799 [TBL] [Abstract][Full Text] [Related]
16. Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize. Gorman Z; Christensen SA; Yan Y; He Y; Borrego E; Kolomiets MV Mol Plant Pathol; 2020 May; 21(5):702-715. PubMed ID: 32105380 [TBL] [Abstract][Full Text] [Related]
17. Correspondence between symptom development of Colletotrichum graminicola and fungal biomass, quantified by a newly developed qPCR assay, depends on the maize variety. Weihmann F; Eisermann I; Becher R; Krijger JJ; Hübner K; Deising HB; Wirsel SG BMC Microbiol; 2016 May; 16():94. PubMed ID: 27215339 [TBL] [Abstract][Full Text] [Related]
18. The galactose metabolism genes UGE1 and UGM1 are novel virulence factors of the maize anthracnose fungus Colletotrichum graminicola. Groß M; Dika B; Loos E; Aliyeva-Schnorr L; Deising HB Mol Microbiol; 2024 May; 121(5):912-926. PubMed ID: 38400525 [TBL] [Abstract][Full Text] [Related]
19. Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Perfect SE; Hughes HB; O'Connell RJ; Green JR Fungal Genet Biol; 1999; 27(2-3):186-98. PubMed ID: 10441444 [TBL] [Abstract][Full Text] [Related]
20. Root infection and systemic colonization of maize by Colletotrichum graminicola. Sukno SA; García VM; Shaw BD; Thon MR Appl Environ Microbiol; 2008 Feb; 74(3):823-32. PubMed ID: 18065625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]