These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 22247271)

  • 41. Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity.
    Takahara H; Hacquard S; Kombrink A; Hughes HB; Halder V; Robin GP; Hiruma K; Neumann U; Shinya T; Kombrink E; Shibuya N; Thomma BP; O'Connell RJ
    New Phytol; 2016 Sep; 211(4):1323-37. PubMed ID: 27174033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum.
    Kleemann J; Rincon-Rivera LJ; Takahara H; Neumann U; Ver Loren van Themaat E; van der Does HC; Hacquard S; Stüber K; Will I; Schmalenbach W; Schmelzer E; O'Connell RJ
    PLoS Pathog; 2012; 8(4):e1002643. PubMed ID: 22496661
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation of infection-specific sequence tags expressed during early stages of maize anthracnose disease development.
    Sugui JA; Deising HB
    Mol Plant Pathol; 2002 Jul; 3(4):197-203. PubMed ID: 20569327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat.
    Marshall R; Kombrink A; Motteram J; Loza-Reyes E; Lucas J; Hammond-Kosack KE; Thomma BP; Rudd JJ
    Plant Physiol; 2011 Jun; 156(2):756-69. PubMed ID: 21467214
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.
    Hemetsberger C; Herrberger C; Zechmann B; Hillmer M; Doehlemann G
    PLoS Pathog; 2012; 8(5):e1002684. PubMed ID: 22589719
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microscopic analysis of colonization of Colletotrichum abscissum in citrus tissues.
    Savi DC; Rossi BJ; Rossi GR; Ferreira-Maba LS; Bini IH; Trindade EDS; Goulin EH; Machado MA; Glienke C
    Microbiol Res; 2019 Sep; 226():27-33. PubMed ID: 31284941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum.
    Bhadauria V; Banniza S; Vandenberg A; Selvaraj G; Wei Y
    BMC Genomics; 2011 Jun; 12():327. PubMed ID: 21699715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in defense transcriptome activation.
    Neu E; Domes HS; Menz I; Kaufmann H; Linde M; Debener T
    Plant Mol Biol; 2019 Mar; 99(4-5):299-316. PubMed ID: 30706286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cataloging proteins putatively secreted during the biotrophy-necrotrophy transition of the anthracnose pathogen Colletotrichum truncatum.
    Bhadauria V; Banniza S; Vandenberg A; Selvaraj G; Wei Y
    Plant Signal Behav; 2011 Oct; 6(10):1457-9. PubMed ID: 21897125
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-Dimensional Ultrastructure of
    Regmi KC; Ghosh S; Koch B; Neumann U; Stein B; O'Connell RJ; Innes RW
    Mol Plant Microbe Interact; 2024 Apr; 37(4):396-406. PubMed ID: 38148303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of a fadA ortholog in the growth and development of Colletotrichum graminicola in vitro and in planta.
    Venard C; Kulshrestha S; Sweigard J; Nuckles E; Vaillancourt L
    Fungal Genet Biol; 2008 Jun; 45(6):973-83. PubMed ID: 18448365
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The biotrophy-associated secreted protein 4 (BAS4) participates in the transition of
    Wang C; Liu Y; Liu L; Wang Y; Yan J; Wang C; Li C; Yang J
    Saudi J Biol Sci; 2019 May; 26(4):795-807. PubMed ID: 31049006
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative transcriptomic analysis indicates genes associated with local and systemic resistance to Colletotrichum graminicola in maize.
    Miranda VJ; Porto WF; Fernandes GDR; Pogue R; Nolasco DO; Araujo ACG; Cota LV; Freitas CG; Dias SC; Franco OL
    Sci Rep; 2017 May; 7(1):2483. PubMed ID: 28559543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases.
    Meinhardt LW; Costa GG; Thomazella DP; Teixeira PJ; Carazzolle MF; Schuster SC; Carlson JE; Guiltinan MJ; Mieczkowski P; Farmer A; Ramaraj T; Crozier J; Davis RE; Shao J; Melnick RL; Pereira GA; Bailey BA
    BMC Genomics; 2014 Feb; 15():164. PubMed ID: 24571091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CPR1: a gene encoding a putative signal peptidase that functions in pathogenicity of Colletotrichum graminicola to maize.
    Thon MR; Nuckles EM; Takach JE; Vaillancourt LJ
    Mol Plant Microbe Interact; 2002 Feb; 15(2):120-8. PubMed ID: 11876424
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Establishment of compatibility in the Ustilago maydis/maize pathosystem.
    Doehlemann G; Wahl R; Vranes M; de Vries RP; Kämper J; Kahmann R
    J Plant Physiol; 2008 Jan; 165(1):29-40. PubMed ID: 17905472
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola.
    Krijger JJ; Horbach R; Behr M; Schweizer P; Deising HB; Wirsel SG
    Mol Plant Microbe Interact; 2008 Oct; 21(10):1325-36. PubMed ID: 18785828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptional reprogramming of wheat and the hemibiotrophic pathogen Septoria tritici during two phases of the compatible interaction.
    Yang F; Li W; Jørgensen HJ
    PLoS One; 2013; 8(11):e81606. PubMed ID: 24303057
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis.
    Takahara H; Dolf A; Endl E; O'Connell R
    Plant J; 2009 Aug; 59(4):672-83. PubMed ID: 19392696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis.
    van der Linde K; Doehlemann G
    Methods Mol Biol; 2013; 975():47-60. PubMed ID: 23386294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.