These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22247526)

  • 21. Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains.
    Duffy BK; Défago G
    Appl Environ Microbiol; 2000 Aug; 66(8):3142-50. PubMed ID: 10919762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions.
    Loper JE; Hassan KA; Mavrodi DV; Davis EW; Lim CK; Shaffer BT; Elbourne LD; Stockwell VO; Hartney SL; Breakwell K; Henkels MD; Tetu SG; Rangel LI; Kidarsa TA; Wilson NL; van de Mortel JE; Song C; Blumhagen R; Radune D; Hostetler JB; Brinkac LM; Durkin AS; Kluepfel DA; Wechter WP; Anderson AJ; Kim YC; Pierson LS; Pierson EA; Lindow SE; Kobayashi DY; Raaijmakers JM; Weller DM; Thomashow LS; Allen AE; Paulsen IT
    PLoS Genet; 2012 Jul; 8(7):e1002784. PubMed ID: 22792073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0.
    Valverde C; Heeb S; Keel C; Haas D
    Mol Microbiol; 2003 Nov; 50(4):1361-79. PubMed ID: 14622422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0.
    Schnider-Keel U; Lejbølle KB; Baehler E; Haas D; Keel C
    Appl Environ Microbiol; 2001 Dec; 67(12):5683-93. PubMed ID: 11722923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction.
    Redondo-Nieto M; Barret M; Morrissey J; Germaine K; Martínez-Granero F; Barahona E; Navazo A; Sánchez-Contreras M; Moynihan JA; Muriel C; Dowling D; O'Gara F; Martín M; Rivilla R
    BMC Genomics; 2013 Jan; 14():54. PubMed ID: 23350846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences.
    Hassan KA; Johnson A; Shaffer BT; Ren Q; Kidarsa TA; Elbourne LD; Hartney S; Duboy R; Goebel NC; Zabriskie TM; Paulsen IT; Loper JE
    Environ Microbiol; 2010 Apr; 12(4):899-915. PubMed ID: 20089046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of host plant genotype, presence of a pathogen, and coinoculation with Pseudomonas fluorescens strains on the rhizosphere expression of hydrogen cyanide- and 2,4-diacetylphloroglucinol biosynthetic genes in P. fluorescens biocontrol strain CHA0.
    Jamali F; Sharifi-Tehrani A; Lutz MP; Maurhofer M
    Microb Ecol; 2009 Feb; 57(2):267-75. PubMed ID: 19030916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the Draft Genome Sequence of the Kiwifruit-Associated Pathogenic Isolate Pseudomonas fluorescens AHK-1.
    Zhang L; Wu Z; Wang X; Tan G; Song J
    Curr Microbiol; 2019 May; 76(5):552-557. PubMed ID: 30824950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Draft genome sequence of the strain 16-537536, isolated from a patient with bronchiectasis and its relationship to the Pseudomonas koreensis group of the Pseudomonas fluorescens complex.
    Fluit AC; Rogers MRC; Díez-Aguilar M; Cantón R; Benaissa-Trouw BJ; Bayjanov JR; Ekkelenkamp MB
    BMC Res Notes; 2020 Jan; 13(1):10. PubMed ID: 31907003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Draft genome sequence of the biocontrol bacterium Chromobacterium sp. strain C-61.
    Kim HJ; Park JY; Han SH; Lee JH; Rong X; McSpadden Gardener BB; Park SK; Kim YC
    J Bacteriol; 2011 Dec; 193(23):6803-4. PubMed ID: 22072653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens.
    Ownley BH; Duffy BK; Weller DM
    Appl Environ Microbiol; 2003 Jun; 69(6):3333-43. PubMed ID: 12788734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the draft genome of Pseudomonas fluorescens ATCC17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines.
    Ye L; Matthijs S; Bodilis J; Hildebrand F; Raes J; Cornelis P
    Biometals; 2014 Aug; 27(4):633-44. PubMed ID: 24756978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species.
    González N; Heeb S; Valverde C; Kay E; Reimmann C; Junier T; Haas D
    BMC Genomics; 2008 Apr; 9():167. PubMed ID: 18405392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Identification of the polyketide synthase genes (PKS) in genome of the strain Pseudomonas fluorescens 28Bb-06 from the freshwater sponge Baikalospongia bacillifera].
    Lipko-Terkina IA; Kaliuzhnaia OV; Kravchenko OS; Parfenova VV
    Mol Biol (Mosk); 2012; 46(4):677-9. PubMed ID: 23113358
    [No Abstract]   [Full Text] [Related]  

  • 35. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens.
    Péchy-Tarr M; Bruck DJ; Maurhofer M; Fischer E; Vogne C; Henkels MD; Donahue KM; Grunder J; Loper JE; Keel C
    Environ Microbiol; 2008 Sep; 10(9):2368-86. PubMed ID: 18484997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide analysis of the FleQ direct regulon in Pseudomonas fluorescens F113 and Pseudomonas putida KT2440.
    Blanco-Romero E; Redondo-Nieto M; Martínez-Granero F; Garrido-Sanz D; Ramos-González MI; Martín M; Rivilla R
    Sci Rep; 2018 Sep; 8(1):13145. PubMed ID: 30177764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stress preadaptation and overexpression of rpoS and hfq genes increase stress resistance of Pseudomonas fluorescens ATCC13525.
    Wu P; Wang Z; Zhu Q; Xie Z; Mei Y; Liang Y; Chen Z
    Microbiol Res; 2021 Sep; 250():126804. PubMed ID: 34144508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5.
    Mavrodi DV; Loper JE; Paulsen IT; Thomashow LS
    BMC Microbiol; 2009 Jan; 9():8. PubMed ID: 19144133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria.
    Downing KJ; Leslie G; Thomson JA
    Appl Environ Microbiol; 2000 Jul; 66(7):2804-10. PubMed ID: 10877771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different responses of pyoverdine genes to autoinduction in Pseudomonas aeruginosa and the group Pseudomonas fluorescens-Pseudomonas putida.
    Ambrosi C; Leoni L; Visca P
    Appl Environ Microbiol; 2002 Aug; 68(8):4122-6. PubMed ID: 12147517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.