BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22247536)

  • 1. Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria.
    Lv Y; Liao J; Wu Z; Han S; Lin Y; Zheng S
    J Bacteriol; 2012 Feb; 194(3):742-3. PubMed ID: 22247536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids.
    Yang J; Yang S
    BMC Genomics; 2017 Jan; 18(Suppl 1):940. PubMed ID: 28198668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate.
    Lv Y; Wu Z; Han S; Lin Y; Zheng S
    J Bacteriol; 2011 Nov; 193(21):6096-7. PubMed ID: 21994927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level.
    Nishio Y; Nakamura Y; Usuda Y; Sugimoto S; Matsui K; Kawarabayasi Y; Kikuchi H; Gojobori T; Ikeo K
    Mol Biol Evol; 2004 Sep; 21(9):1683-91. PubMed ID: 15163767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory and Metabolic Networks for Amino Acid Production by Corynebacterium glutamicum.
    Kalinowski J
    J Biotechnol; 2011 Jul; 154(2-3):99-100. PubMed ID: 21664532
    [No Abstract]   [Full Text] [Related]  

  • 6. Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain.
    Gui Y; Ma Y; Xu Q; Zhang C; Xie X; Chen N
    J Biotechnol; 2016 Feb; 220():64-5. PubMed ID: 26784991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
    Kalinowski J; Bathe B; Bartels D; Bischoff N; Bott M; Burkovski A; Dusch N; Eggeling L; Eikmanns BJ; Gaigalat L; Goesmann A; Hartmann M; Huthmacher K; Krämer R; Linke B; McHardy AC; Meyer F; Möckel B; Pfefferle W; Pühler A; Rey DA; Rückert C; Rupp O; Sahm H; Wendisch VF; Wiegräbe I; Tauch A
    J Biotechnol; 2003 Sep; 104(1-3):5-25. PubMed ID: 12948626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging Corynebacterium glutamicum systems biology.
    Wendisch VF; Bott M; Kalinowski J; Oldiges M; Wiechert W
    J Biotechnol; 2006 Jun; 124(1):74-92. PubMed ID: 16406159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation sequencing-based genome-wide mutation analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain.
    Lee CS; Nam JY; Son ES; Kwon OC; Han W; Cho JY; Park YJ
    J Microbiol; 2012 Oct; 50(5):860-3. PubMed ID: 23124757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of plasmid partition function in coryneform bacteria.
    Kurusu Y; Satoh Y; Inui M; Kohama K; Kobayashi M; Terasawa M; Yukawa H
    Appl Environ Microbiol; 1991 Mar; 57(3):759-64. PubMed ID: 2039232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of strain-specific genes in glutamic acid-producing Corynebacterium glutamicum ssp. lactofermentum AJ 1511.
    Nishio Y; Koseki C; Tonouchi N; Matsui K; Sugimoto S; Usuda Y
    J Gen Appl Microbiol; 2017 Jul; 63(3):157-164. PubMed ID: 28392541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum.
    Brune I; Jochmann N; Brinkrolf K; Hüser AT; Gerstmeir R; Eikmanns BJ; Kalinowski J; Pühler A; Tauch A
    J Bacteriol; 2007 Apr; 189(7):2720-33. PubMed ID: 17259312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation sequencing-based transcriptome analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain.
    Kim HI; Nam JY; Cho JY; Lee CS; Park YJ
    J Microbiol; 2013 Dec; 51(6):877-80. PubMed ID: 24385368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the biotin biosynthesis pathway in coryneform bacteria: cloning and sequencing of the bioB gene from Brevibacterium flavum.
    Hatakeyama K; Kohama K; Vertès AA; Kobayashi M; Kurusu Y; Yukawa H
    DNA Seq; 1993; 4(2):87-93. PubMed ID: 8173080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse.
    Lee JY; Na YA; Kim E; Lee HS; Kim P
    J Microbiol Biotechnol; 2016 May; 26(5):807-22. PubMed ID: 26838341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer Brevibacterium lactofermentum (Corynebacterium glutamicum ATCC 13869).
    Ramos A; Macias JR; Gil JA
    Gene; 1997 Oct; 198(1-2):217-22. PubMed ID: 9370284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
    Ikeda M; Nakagawa S
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):99-109. PubMed ID: 12743753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain.
    Wu Y; Li P; Zheng P; Zhou W; Chen N; Sun J
    J Biotechnol; 2015 Aug; 207():10-1. PubMed ID: 25953304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum.
    Hänssler E; Müller T; Jessberger N; Völzke A; Plassmeier J; Kalinowski J; Krämer R; Burkovski A
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):625-32. PubMed ID: 17483938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.