These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22247579)

  • 41. Tensile behaviour of individual fibre bundles in the human lumbar anulus fibrosus.
    Pham DT; Shapter JG; Costi JJ
    J Biomech; 2018 Jan; 67():24-31. PubMed ID: 29221904
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography.
    Beauchemin PF; Bayly PV; Garbow JR; Schmidt JLS; Okamoto RJ; Chériet F; Périé D
    NMR Biomed; 2018 Oct; 31(10):e3918. PubMed ID: 29727498
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: an in-vitro study.
    Chuah YJ; Lee WC; Wong HK; Kang Y; Hee HT
    Exp Cell Res; 2015 Feb; 331(1):176-182. PubMed ID: 25261779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A homogenization model of the annulus fibrosus.
    Yin L; Elliott DM
    J Biomech; 2005 Aug; 38(8):1674-84. PubMed ID: 15958225
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanical damage to the intervertebral disc annulus fibrosus subjected to tensile loading.
    Iatridis JC; MaClean JJ; Ryan DA
    J Biomech; 2005 Mar; 38(3):557-65. PubMed ID: 15652555
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration.
    Gilbert HT; Hoyland JA; Freemont AJ; Millward-Sadler SJ
    Arthritis Res Ther; 2011 Jan; 13(1):R8. PubMed ID: 21276216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Initial investigation of individual and combined annulus fibrosus and nucleus pulposus repair ex vivo.
    Sloan SR; Galesso D; Secchieri C; Berlin C; Hartl R; Bonassar LJ
    Acta Biomater; 2017 Sep; 59():192-199. PubMed ID: 28669721
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Large residual strains are present in the intervertebral disc annulus fibrosus in the unloaded state.
    Michalek AJ; Gardner-Morse MG; Iatridis JC
    J Biomech; 2012 Apr; 45(7):1227-31. PubMed ID: 22342138
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The stress and strain states of the posterior annulus under flexion.
    Hollingsworth NT; Wagner DR
    Spine (Phila Pa 1976); 2012 Aug; 37(18):E1134-9. PubMed ID: 22543250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Beta1 integrin inhibits apoptosis induced by cyclic stretch in annulus fibrosus cells via ERK1/2 MAPK pathway.
    Zhang K; Ding W; Sun W; Sun XJ; Xie YZ; Zhao CQ; Zhao J
    Apoptosis; 2016 Jan; 21(1):13-24. PubMed ID: 26467923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.
    Sharifi S; van Kooten TG; Kranenburg HJ; Meij BP; Behl M; Lendlein A; Grijpma DW
    Biomaterials; 2013 Nov; 34(33):8105-13. PubMed ID: 23932501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tissue Engineering of the Intervertebral Disc's Annulus Fibrosus: A Scaffold-Based Review Study.
    Tavakoli J
    Tissue Eng Regen Med; 2017 Apr; 14(2):81-91. PubMed ID: 30603465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Viscoelastic shear properties of porcine temporomandibular joint disc.
    Wu Y; Kuo J; Wright GJ; Cisewski SE; Wei F; Kern MJ; Yao H
    Orthod Craniofac Res; 2015 Apr; 18 Suppl 1(0 1):156-63. PubMed ID: 25865544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of cyclic dynamic tensile strain on previously compressed inner annulus fibrosus and nucleus pulposus cells of human intervertebral disc-an in vitro study.
    Hee HT; Zhang J; Wong HK
    J Orthop Res; 2010 Apr; 28(4):503-9. PubMed ID: 19810104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds.
    Driscoll TP; Nerurkar NL; Jacobs NT; Elliott DM; Mauck RL
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1627-36. PubMed ID: 22098865
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling of human intervertebral disc annulus fibrosus with complex multi-fiber networks.
    Ghezelbash F; Eskandari AH; Shirazi-Adl A; Kazempour M; Tavakoli J; Baghani M; Costi JJ
    Acta Biomater; 2021 Mar; 123():208-221. PubMed ID: 33453409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Residual strains in the intervertebral disc annulus fibrosus suggest complex tissue remodeling in response to in-vivo loading.
    Duclos SE; Michalek AJ
    J Mech Behav Biomed Mater; 2017 Apr; 68():232-238. PubMed ID: 28232297
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of needle puncture injury on microscale shear strain in the intervertebral disc annulus fibrosus.
    Michalek AJ; Buckley MR; Bonassar LJ; Cohen I; Iatridis JC
    Spine J; 2010 Dec; 10(12):1098-105. PubMed ID: 20971041
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling shear behavior of the annulus fibrosus.
    Hollingsworth NT; Wagner DR
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1103-14. PubMed ID: 21783119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.