These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 22247719)
1. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model. Song H; Wang Y; Pant K Microfluid Nanofluidics; 2012 Jan; 12(1-4):265-277. PubMed ID: 22247719 [TBL] [Abstract][Full Text] [Related]
2. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow. Song H; Wang Y; Pant K Microfluid Nanofluidics; 2013 Jan; 14(1-2):371-382. PubMed ID: 23554584 [TBL] [Abstract][Full Text] [Related]
3. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field. Krishnaveni T; Renganathan T; Picardo JR; Pushpavanam S Phys Rev E; 2017 Sep; 96(3-1):033117. PubMed ID: 29347018 [TBL] [Abstract][Full Text] [Related]
4. Semi-analytical solutions for two-dimensional convection-diffusion-reactive equations based on homotopy analysis method. Yu C; Deng A; Ma J; Cai X; Wen C Environ Sci Pollut Res Int; 2018 Dec; 25(34):34720-34729. PubMed ID: 30324371 [TBL] [Abstract][Full Text] [Related]
5. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials. Tian F; Li B; Kwok DY Langmuir; 2005 Feb; 21(3):1126-31. PubMed ID: 15667199 [TBL] [Abstract][Full Text] [Related]
6. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Hattori K; Sugiura S; Kanamori T Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461 [TBL] [Abstract][Full Text] [Related]
7. Dispersion modeling in pore networks: A comparison of common pore-scale models and alternative approaches. Sadeghi MA; Agnaou M; Barralet J; Gostick J J Contam Hydrol; 2020 Jan; 228():103578. PubMed ID: 31767229 [TBL] [Abstract][Full Text] [Related]
8. Transport and diffusion in the embedding map. Nirmal Thyagu N; Gupte N Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066203. PubMed ID: 19658579 [TBL] [Abstract][Full Text] [Related]
9. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode. Amatore C; Da Mota N; Sella C; Thouin L Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744 [TBL] [Abstract][Full Text] [Related]
10. Capillary Flow Dynamics in Composite Rectangular Microchannels with Rough Walls. Garcia Eijo PM; Cabaleiro JM; Artana G Langmuir; 2022 Nov; 38(43):13296-13304. PubMed ID: 36269940 [TBL] [Abstract][Full Text] [Related]
11. Numerical solution of a multi-ion one-potential model for electroosmotic flow in two-dimensional rectangular microchannels. Van Theemsche A; Deconinck J; Van den Bossche B; Bortels L Anal Chem; 2002 Oct; 74(19):4919-26. PubMed ID: 12380813 [TBL] [Abstract][Full Text] [Related]
12. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport. Carroll GT; Devereux PD; Ku DN; McGloughlin TM; Walsh MT Biomed Eng Online; 2010 Jul; 9():34. PubMed ID: 20642816 [TBL] [Abstract][Full Text] [Related]
13. Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels. Yang C; Li D J Colloid Interface Sci; 1997 Oct; 194(1):95-107. PubMed ID: 9367589 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation of two-phase partition chromatography in microchannels for moderated log P measurements. Ulmeanu SM; Josserand J; Jensen H; Bouchard G; Carrupt PA; Girault HH J Chromatogr A; 2005 Jan; 1063(1-2):89-97. PubMed ID: 15700460 [TBL] [Abstract][Full Text] [Related]
16. Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: General classification and nonlinear simulations. Budroni MA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063007. PubMed ID: 26764804 [TBL] [Abstract][Full Text] [Related]
17. Predicting enhanced mass flow rates in gas microchannels using nonkinetic models. Dadzie SK; Brenner H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036318. PubMed ID: 23031024 [TBL] [Abstract][Full Text] [Related]
18. Numerical investigation of the solute dispersion in finite-length microchannels with the interphase transport. Li W; Zhang W; Qian F; Huang D; Wang Q; Zhao C Electrophoresis; 2021 Feb; 42(3):257-268. PubMed ID: 33111983 [TBL] [Abstract][Full Text] [Related]
19. Static response of deformable microchannels: a comparative modelling study. Shidhore TC; Christov IC J Phys Condens Matter; 2018 Feb; 30(5):054002. PubMed ID: 29244030 [TBL] [Abstract][Full Text] [Related]
20. Analytical theory of oxygen transport in the human placenta. Serov AS; Salafia CM; Filoche M; Grebenkov DS J Theor Biol; 2015 Mar; 368():133-44. PubMed ID: 25580015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]