BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 22247741)

  • 1. Synergistic Regulation of Angiogenic Sprouting by Biochemical Factors and Wall Shear Stress.
    Kaunas R; Kang H; Bayless KJ
    Cell Mol Bioeng; 2011 Dec; 4(4):547-559. PubMed ID: 22247741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S1P Synergizes with Wall Shear Stress and Other Angiogenic Factors to Induce Endothelial Cell Sprouting Responses.
    Duran CL; Kaunas R; Bayless KJ
    Methods Mol Biol; 2018; 1697():99-115. PubMed ID: 28456951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid shear stress threshold regulates angiogenic sprouting.
    Galie PA; Nguyen DH; Choi CK; Cohen DM; Janmey PA; Chen CS
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7968-73. PubMed ID: 24843171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model.
    Akbari E; Spychalski GB; Rangharajan KK; Prakash S; Song JW
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31277456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid forces control endothelial sprouting.
    Song JW; Munn LL
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15342-7. PubMed ID: 21876168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of a three-dimensional model to study human uterine angiogenesis.
    Duran CL; Abbey CA; Bayless KJ
    Mol Hum Reprod; 2018 Feb; 24(2):74-93. PubMed ID: 29329415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary sprout endothelial cells exhibit a CD36 low phenotype: regulation by shear stress and vascular endothelial growth factor-induced mechanism for attenuating anti-proliferative thrombospondin-1 signaling.
    Anderson CR; Hastings NE; Blackman BR; Price RJ
    Am J Pathol; 2008 Oct; 173(4):1220-8. PubMed ID: 18772338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Force at the Tip--Modelling Tension and Proliferation in Sprouting Angiogenesis.
    Santos-Oliveira P; Correia A; Rodrigues T; Ribeiro-Rodrigues TM; Matafome P; Rodríguez-Manzaneque JC; Seiça R; Girão H; Travasso RD
    PLoS Comput Biol; 2015 Aug; 11(8):e1004436. PubMed ID: 26248210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of vascular endothelial growth factor-associated tyrosine kinase activity with SU5416 blocks sprouting in the microvascular endothelial cell spheroid model of angiogenesis.
    Haspel HC; Scicli GM; McMahon G; Scicli AG
    Microvasc Res; 2002 May; 63(3):304-15. PubMed ID: 11969307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors.
    Hellsten Y; Hoier B
    Biochem Soc Trans; 2014 Dec; 42(6):1616-22. PubMed ID: 25399579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
    van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T
    Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression.
    Hosseini F; Naghavi N
    J Biomed Phys Eng; 2017 Sep; 7(3):233-256. PubMed ID: 29082215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model.
    Buchanan CF; Verbridge SS; Vlachos PP; Rylander MN
    Cell Adh Migr; 2014; 8(5):517-24. PubMed ID: 25482628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4151-7. PubMed ID: 26552886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing sphingosine-1-phosphate to stimulate sprouting angiogenesis.
    Su SC; Bayless KJ
    Methods Mol Biol; 2012; 874():201-13. PubMed ID: 22528450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity.
    Vaeyens MM; Jorge-Peñas A; Barrasa-Fano J; Steuwe C; Heck T; Carmeliet P; Roeffaers M; Van Oosterwyck H
    Angiogenesis; 2020 Aug; 23(3):315-324. PubMed ID: 31997048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis.
    Wietecha MS; Cerny WL; DiPietro LA
    Curr Top Microbiol Immunol; 2013; 367():3-32. PubMed ID: 23224648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of angiogenic growth factor combinations on retinal endothelial cells.
    Castellon R; Hamdi HK; Sacerio I; Aoki AM; Kenney MC; Ljubimov AV
    Exp Eye Res; 2002 Apr; 74(4):523-35. PubMed ID: 12076096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of endothelial cell behavior in sprouting angiogenesis.
    Eilken HM; Adams RH
    Curr Opin Cell Biol; 2010 Oct; 22(5):617-25. PubMed ID: 20817428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear-Stress Sensitive Inwardly-Rectifying K
    Boriushkin E; Fancher IS; Levitan I
    Cell Physiol Biochem; 2019; 52(6):1569-1583. PubMed ID: 31145841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.