BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22248594)

  • 41. An efficient bioprocess for enzymatic production of L-menthol with high ratio of substrate to catalyst using whole cells of recombinant E. coli.
    Zheng GW; Pan J; Yu HL; Ngo-Thi MT; Li CX; Xu JH
    J Biotechnol; 2010 Oct; 150(1):108-14. PubMed ID: 20638431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A genetic selection system for evolving enantioselectivity of enzymes.
    Reetz MT; Höbenreich H; Soni P; Fernández L
    Chem Commun (Camb); 2008 Nov; (43):5502-4. PubMed ID: 18997932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of the catalytic residues of carboxylesterase from Arthrobacter globiformis by diisopropyl fluorophosphate-labeling and site-directed mutagenesis.
    Nishizawa M; Yabusaki Y; Kanaoka M
    Biosci Biotechnol Biochem; 2011; 75(1):89-94. PubMed ID: 21266781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dynamics simulation and site-directed mutagenesis of alcohol acyltransferase: a proposed mechanism of catalysis.
    Morales-Quintana L; Nuñez-Tobar MX; Moya-León MA; Herrera R
    J Chem Inf Model; 2013 Oct; 53(10):2689-700. PubMed ID: 24032548
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Site-directed mutagenesis and computational study of the Y366 active site in Bacillus subtilis protoporphyrinogen oxidase.
    Sun L; Wen X; Tan Y; Li H; Yang X; Zhao Y; Wang B; Cao Q; Niu C; Xi Z
    Amino Acids; 2009 Sep; 37(3):523-30. PubMed ID: 19266155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning and molecular modeling of a thermostable carboxylesterase from the chicken uropygial glands.
    Fendri A; Frikha F; Louati H; Bou Ali M; Gargouri H; Gargouri Y; Miled N
    J Mol Graph Model; 2015 Mar; 56():1-9. PubMed ID: 25541525
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rationally engineered double substituted variants of Yarrowia lipolytica lipase with enhanced activity coupled with highly inverted enantioselectivity towards 2-bromo phenyl acetic acid esters.
    Cambon E; Piamtongkam R; Bordes F; Duquesne S; André I; Marty A
    Biotechnol Bioeng; 2010 Aug; 106(6):852-9. PubMed ID: 20506522
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deletion and Randomization of Structurally Variable Regions in
    Martínez R; Bernal C; Álvarez R; Concha C; Araya F; Cabrera R; Dhoke GV; Davari MD
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Key amino acid associated with acephate detoxification by Cydia pomonella carboxylesterase based on molecular dynamics with alanine scanning and site-directed mutagenesis.
    Yang XQ; Liu JY; Li XC; Chen MH; Zhang YL
    J Chem Inf Model; 2014 May; 54(5):1356-70. PubMed ID: 24749772
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving the enantioselectivity of halohydrin dehalogenase for the synthesis of (R)-benzyl glycidyl ether via biocatalytic azidolysis.
    Xue F; Li C; Xu Q; Huang H
    Int J Biol Macromol; 2021 Feb; 170():123-128. PubMed ID: 33352156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Global and local molecular dynamics of a bacterial carboxylesterase provide insight into its catalytic mechanism.
    Yu X; Sigler SC; Hossain D; Wierdl M; Gwaltney SR; Potter PM; Wadkins RM
    J Mol Model; 2012 Jun; 18(6):2869-83. PubMed ID: 22127613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly enantioselective mutant carbonyl reductases created via structure-based site-saturation mutagenesis.
    Li H; Yang Y; Zhu D; Hua L; Kantardjieff K
    J Org Chem; 2010 Nov; 75(22):7559-64. PubMed ID: 20964397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Residue Val237 is critical for the enantioselectivity of Penicillium expansum lipase.
    Tang L; Su M; Chi L; Zhang J; Zhang H; Zhu L
    Biotechnol Lett; 2014 Mar; 36(3):633-9. PubMed ID: 24338160
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein engineering of nirobenzene dioxygenase for enantioselective synthesis of chiral sulfoxides.
    Shainsky J; Bernath-Levin K; Isaschar-Ovdat S; Glaser F; Fishman A
    Protein Eng Des Sel; 2013 May; 26(5):335-45. PubMed ID: 23442445
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Switch of substrate specificity of hyperthermophilic acylaminoacyl peptidase by combination of protein and solvent engineering.
    Liu C; Yang G; Wu L; Tian G; Zhang Z; Feng Y
    Protein Cell; 2011 Jun; 2(6):497-506. PubMed ID: 21748600
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling.
    Choi YH; Lee YN; Park YJ; Yoon SJ; Lee HB
    BMB Rep; 2016 Jun; 49(6):349-54. PubMed ID: 27222124
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering the Enantioselectivity and Thermostability of a (+)-γ-Lactamase from Microbacterium hydrocarbonoxydans for Kinetic Resolution of Vince Lactam (2-Azabicyclo[2.2.1]hept-5-en-3-one).
    Gao S; Zhu S; Huang R; Li H; Wang H; Zheng G
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054871
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel lactone-forming carboxylesterase: molecular identification of a tuliposide A-converting enzyme in tulip.
    Nomura T; Ogita S; Kato Y
    Plant Physiol; 2012 Jun; 159(2):565-78. PubMed ID: 22474185
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing the Enantioselectivity and Catalytic Efficiency of Esterase from
    Zhou J; Sang Y; Wang Z; Feng J; Zhu L; Chen X
    J Agric Food Chem; 2024 Jan; 72(4):2277-2286. PubMed ID: 38235660
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rational design of esterase BioH with enhanced enantioselectivity towards methyl (S)-o-chloromandelate.
    Gu J; Ye L; Guo F; Lv X; Lu W; Yu H
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1709-18. PubMed ID: 25104036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.