These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22249029)

  • 1. Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect.
    Nguyen VH; Mazzamuto F; Saint-Martin J; Bournel A; Dollfus P
    Nanotechnology; 2012 Feb; 23(6):065201. PubMed ID: 22249029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved performance of graphene transistors by strain engineering.
    Nguyen VH; Nguyen HV; Dollfus P
    Nanotechnology; 2014 Apr; 25(16):165201. PubMed ID: 24670679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magneto-transport properties of gapped graphene.
    Jiang L; Zheng Y; Li H; Shen H
    Nanotechnology; 2010 Apr; 21(14):145703. PubMed ID: 20220217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-terminal graphene negative differential resistance devices.
    Wu Y; Farmer DB; Zhu W; Han SJ; Dimitrakopoulos CD; Bol AA; Avouris P; Lin YM
    ACS Nano; 2012 Mar; 6(3):2610-6. PubMed ID: 22324780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene nanomesh: new versatile materials.
    Yang J; Ma M; Li L; Zhang Y; Huang W; Dong X
    Nanoscale; 2014 Nov; 6(22):13301-13. PubMed ID: 25308060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene nanomesh.
    Bai J; Zhong X; Jiang S; Huang Y; Duan X
    Nat Nanotechnol; 2010 Mar; 5(3):190-4. PubMed ID: 20154685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear current-voltage characteristics and enhanced negative differential conductance in graphene field effect transistors.
    Wang L; Chen X; Hu Y; Yu A; Lu W
    Nanoscale; 2014 Nov; 6(21):12769-79. PubMed ID: 25224726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductive junctions with parallel graphene sheets.
    Zheng X; Ke SH; Yang W
    J Chem Phys; 2010 Mar; 132(11):114703. PubMed ID: 20331312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport properties of monolayer and bilayer graphene p-n junctions with charge puddles in the quantum Hall regime.
    Cheng SG
    J Phys Condens Matter; 2010 Nov; 22(46):465301. PubMed ID: 21403362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic response of conductance peak structure in junction-confined graphene nanoribbons.
    Yamamoto M; Wakabayashi K
    Nanoscale; 2012 Feb; 4(4):1138-45. PubMed ID: 22080960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chirality effect in disordered graphene ribbon junctions.
    Long W
    J Phys Condens Matter; 2012 May; 24(17):175302. PubMed ID: 22469635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors.
    Lin MW; Ling C; Zhang Y; Yoon HJ; Cheng MM; Agapito LA; Kioussis N; Widjaja N; Zhou Z
    Nanotechnology; 2011 Jul; 22(26):265201. PubMed ID: 21576804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors.
    Yu C; Liu H; Ni W; Gao N; Zhao J; Zhang H
    Phys Chem Chem Phys; 2011 Feb; 13(8):3461-7. PubMed ID: 21240394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced current-rectification in bilayer graphene with an electrically tuned sloped bandgap.
    Aparecido-Ferreira A; Miyazaki H; Li SL; Komatsu K; Nakaharai S; Tsukagoshi K
    Nanoscale; 2012 Dec; 4(24):7842-6. PubMed ID: 23149422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of disorder with long-range correlation on transport in graphene nanoribbon.
    Zhang GP; Gao M; Zhang YY; Liu N; Qin ZJ; Shangguan MH
    J Phys Condens Matter; 2012 Jun; 24(23):235303. PubMed ID: 22576011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductance oscillations induced by ballistic snake states in a graphene heterojunction.
    Taychatanapat T; Tan JY; Yeo Y; Watanabe K; Taniguchi T; Özyilmaz B
    Nat Commun; 2015 Feb; 6():6093. PubMed ID: 25652075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport properties through graphene grain boundaries: strain effects versus lattice symmetry.
    Hung Nguyen V; Hoang TX; Dollfus P; Charlier JC
    Nanoscale; 2016 Jun; 8(22):11658-73. PubMed ID: 27218828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable tight-binding model for graphene.
    Liu MH; Rickhaus P; Makk P; Tóvári E; Maurand R; Tkatschenko F; Weiss M; Schönenberger C; Richter K
    Phys Rev Lett; 2015 Jan; 114(3):036601. PubMed ID: 25659011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis of electronic transport in graphene transistors.
    Wang H; Wu Y; Cong C; Shang J; Yu T
    ACS Nano; 2010 Dec; 4(12):7221-8. PubMed ID: 21047068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.