These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22249126)
1. Comparison of two adsorbents for the removal of pentavalent arsenic from aqueous solutions. Li Q; Xu X; Cui H; Pang J; Wei Z; Sun Z; Zhai J J Environ Manage; 2012 May; 98():98-106. PubMed ID: 22249126 [TBL] [Abstract][Full Text] [Related]
2. Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent. Zhang Y; Yang M; Huang X Chemosphere; 2003 Jun; 51(9):945-52. PubMed ID: 12697185 [TBL] [Abstract][Full Text] [Related]
3. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent. Zhang G; Liu H; Liu R; Qu J J Colloid Interface Sci; 2009 Jul; 335(2):168-74. PubMed ID: 19406416 [TBL] [Abstract][Full Text] [Related]
4. Column-mode fluoride removal from aqueous solution by magnesia-loaded fly ash cenospheres. Xu X; Li Q; Cui H; Pang J; An H; Wang W; Zhai J Environ Technol; 2012 Jun; 33(10-12):1409-15. PubMed ID: 22856316 [TBL] [Abstract][Full Text] [Related]
5. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. Ren Z; Zhang G; Chen JP J Colloid Interface Sci; 2011 Jun; 358(1):230-7. PubMed ID: 21440898 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: Experimental and modeling. Ye C; Yan B; Ji X; Liao B; Gong R; Pei X; Liu G Ecotoxicol Environ Saf; 2019 Sep; 180():366-373. PubMed ID: 31102844 [TBL] [Abstract][Full Text] [Related]
7. A study on arsenic adsorption on polymetallic sea nodule in aqueous medium. Maity S; Chakravarty S; Bhattacharjee S; Roy BC Water Res; 2005 Jul; 39(12):2579-90. PubMed ID: 15979125 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of 2,4-Dichlorophenoxyacetic Acid from an Aqueous Solution on Fly Ash. Kuśmierek K; Świątkowski A Water Environ Res; 2016 Mar; 88(3):231-8. PubMed ID: 26931534 [TBL] [Abstract][Full Text] [Related]
10. Arsenic removal from an aqueous solution by modified A. niger biomass: batch kinetic and isotherm studies. Pokhrel D; Viraraghavan T J Hazard Mater; 2008 Feb; 150(3):818-25. PubMed ID: 17582682 [TBL] [Abstract][Full Text] [Related]
11. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Wang S; Soudi M; Li L; Zhu ZH J Hazard Mater; 2006 May; 133(1-3):243-51. PubMed ID: 16310947 [TBL] [Abstract][Full Text] [Related]
12. Removal of phenolic compounds from aqueous solutions by adsorption onto manganese nodule leached residue. Parida KM; Pradhan AC J Hazard Mater; 2010 Jan; 173(1-3):758-64. PubMed ID: 19836880 [TBL] [Abstract][Full Text] [Related]
13. Preparation of low cost activated carbon from Myrtus communis and pomegranate and their efficient application for removal of Congo red from aqueous solution. Ghaedi M; Tavallali H; Sharifi M; Kokhdan SN; Asghari A Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():107-14. PubMed ID: 22104325 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of anionic dyes from aqueous solution on fly ash. Sun D; Zhang X; Wu Y; Liu X J Hazard Mater; 2010 Sep; 181(1-3):335-42. PubMed ID: 20570045 [TBL] [Abstract][Full Text] [Related]
15. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption. Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237 [TBL] [Abstract][Full Text] [Related]
16. Biosorption of arsenic from aqueous solution using agricultural residue 'rice polish'. Ranjan D; Talat M; Hasan SH J Hazard Mater; 2009 Jul; 166(2-3):1050-9. PubMed ID: 19131161 [TBL] [Abstract][Full Text] [Related]
17. Arsenic adsorption from aqueous solution on synthetic zeolites. Chutia P; Kato S; Kojima T; Satokawa S J Hazard Mater; 2009 Feb; 162(1):440-7. PubMed ID: 18583035 [TBL] [Abstract][Full Text] [Related]
18. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Asta MP; Cama J; Martínez M; Giménez J J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332 [TBL] [Abstract][Full Text] [Related]
19. Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. Bulut Y; Gözübenli N; Aydin H J Hazard Mater; 2007 Jun; 144(1-2):300-6. PubMed ID: 17118540 [TBL] [Abstract][Full Text] [Related]
20. Use of magnesia for boron removal from irrigation water. Dionisiou N; Matsi T; Misopolinos ND J Environ Qual; 2006; 35(6):2222-8. PubMed ID: 17071892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]