These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22249883)

  • 1. Comparison of Chloroflexus aurantiacus strain J-10-fl proteomes of cells grown chemoheterotrophically and photoheterotrophically.
    Cao L; Bryant DA; Schepmoes AA; Vogl K; Smith RD; Lipton MS; Callister SJ
    Photosynth Res; 2012 Feb; 110(3):153-68. PubMed ID: 22249883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus.
    Tang KH; Barry K; Chertkov O; Dalin E; Han CS; Hauser LJ; Honchak BM; Karbach LE; Land ML; Lapidus A; Larimer FW; Mikhailova N; Pitluck S; Pierson BK; Blankenship RE
    BMC Genomics; 2011 Jun; 12():334. PubMed ID: 21714912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Photosynth Res; 2020 Dec; 146(1-3):95-108. PubMed ID: 31939070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic Production of Bacteriochlorophylls in the Filamentous Anoxygenic Photosynthetic Bacterium, Chloroflexus aurantiacus in the Light.
    Izaki K; Haruta S
    Microbes Environ; 2020; 35(2):. PubMed ID: 32418929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic Time-Course Analysis of the Filamentous Anoxygenic Phototrophic Bacterium,
    Kawai S; Shimamura S; Shimane Y; Tsukatani Y
    Microorganisms; 2022 Jun; 10(7):. PubMed ID: 35889008
    [No Abstract]   [Full Text] [Related]  

  • 6. Sulfide-dependent Photoautotrophy in the Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus aggregans.
    Kanno N; Haruta S; Hanada S
    Microbes Environ; 2019 Sep; 34(3):304-309. PubMed ID: 31391357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria.
    Frigaard NU; Bryant DA
    Arch Microbiol; 2004 Oct; 182(4):265-76. PubMed ID: 15340781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the AcsF protein in Chloroflexus aurantiacus.
    Tang KH; Wen J; Li X; Blankenship RE
    J Bacteriol; 2009 Jun; 191(11):3580-7. PubMed ID: 19346304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus.
    Zarzycki J; Fuchs G
    Appl Environ Microbiol; 2011 Sep; 77(17):6181-8. PubMed ID: 21764971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148396. PubMed ID: 33581107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of auracyanin A at 1.85 A resolution: the structures and functions of auracyanins A and B, two almost identical "blue" copper proteins, in the photosynthetic bacterium Chloroflexus aurantiacus.
    Lee M; del Rosario MC; Harris HH; Blankenship RE; Guss JM; Freeman HC
    J Biol Inorg Chem; 2009 Mar; 14(3):329-45. PubMed ID: 19190939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-dependent autotrophic growth in phototrophic and chemolithotrophic cultures of thermophilic bacteria, Chloroflexus aggregans and Chloroflexus aurantiacus, isolated from Nakabusa hot springs.
    Kawai S; Nishihara A; Matsuura K; Haruta S
    FEMS Microbiol Lett; 2019 May; 366(10):. PubMed ID: 31158281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the bacteriochlorophyll c oligomerisation extent in Chloroflexus aurantiacus chlorosomes by very low-frequency vibrations of the pigment molecules: A new approach.
    Yakovlev AG; Taisova AS; Shuvalov VA; Fetisova ZG
    Biophys Chem; 2018 Sep; 240():1-8. PubMed ID: 29857169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloroflexus islandicus sp. nov., a thermophilic filamentous anoxygenic phototrophic bacterium from a geyser.
    Gaisin VA; Kalashnikov AM; Grouzdev DS; Sukhacheva MV; Kuznetsov BB; Gorlenko VM
    Int J Syst Evol Microbiol; 2017 May; 67(5):1381-1386. PubMed ID: 28126046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular organization of photosynthetic membrane proteins in the chlorosome-containing bacterium Chloroflexus aurantiacus.
    Bína D; Gardian Z; Vácha F; Litvín R
    Photosynth Res; 2014 Oct; 122(1):13-21. PubMed ID: 24760483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycine Cleavage Powers Photoheterotrophic Growth of Chloroflexus aurantiacus in the Absence of H 2.
    He L; Wang Y; You L; Khin Y; Tang JK; Tang YJ
    Front Microbiol; 2015; 6():1467. PubMed ID: 26732979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SANS investigation of the photosynthetic machinery of Chloroflexus aurantiacus.
    Tang KH; Urban VS; Wen J; Xin Y; Blankenship RE
    Biophys J; 2010 Oct; 99(8):2398-407. PubMed ID: 20959079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus.
    Yakovlev A; Taisova A; Arutyunyan A; Shuvalov V; Fetisova Z
    Photosynth Res; 2017 Sep; 133(1-3):343-356. PubMed ID: 28361448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photooxidation of the primary electron donor.
    Zabelin AA; Shkuropatova VA; Shuvalov VA; Shkuropatov AY
    Biochemistry (Mosc); 2012 Feb; 77(2):157-64. PubMed ID: 22348475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus.
    Psencík J; Collins AM; Liljeroos L; Torkkeli M; Laurinmäki P; Ansink HM; Ikonen TP; Serimaa RE; Blankenship RE; Tuma R; Butcher SJ
    J Bacteriol; 2009 Nov; 191(21):6701-8. PubMed ID: 19717605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.