BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22250575)

  • 21. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.
    Cheng J; Gu C; Zhang D; Chen SC
    Opt Lett; 2015 Nov; 40(21):4875-8. PubMed ID: 26512472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compressed sensing hyperspectral imaging in the 0.9-2.5  μm shortwave infrared wavelength range using a digital micromirror device and InGaAs linear array detector.
    Arnob MMP; Nguyen H; Han Z; Shih WC
    Appl Opt; 2018 Jun; 57(18):5019-5024. PubMed ID: 30117961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a digital micromirror spectrometer for analytical atomic spectrometry.
    Batchelor JD; Jones BT
    Anal Chem; 1998 Dec; 70(23):4907-14. PubMed ID: 21644673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Miniature Broadband NIR Spectrometer Based on FR4 Electromagnetic Scanning Micro-Grating.
    Huang L; Wen Q; Huang J; Yu F; Lei H; Wen Z
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32290131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential for using a digital micromirror device as a signal multiplexer in visible spectroscopy.
    Spudich TM; Utz CK; Kuntz JM; Deverse RA; Hammaker RM; McCurdy DL
    Appl Spectrosc; 2003 Jul; 57(7):733-6. PubMed ID: 14658649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A near-infrared spectrometer based on novel grating light modulators.
    Wei W; Huang S; Wang N; Jin Z; Zhang J; Chen W
    Sensors (Basel); 2009; 9(4):3109-21. PubMed ID: 22574065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hadamard transform imager and imaging spectrometer.
    Swift RD; Wattson RB; Decker JA; Paganetti R; Harwit M
    Appl Opt; 1976 Jun; 15(6):1595-609. PubMed ID: 20165224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signal-to-noise ratio enhancement of a Hadamard transform spectrometer using a two-dimensional slit-array.
    Chi M; Wu Y; Qian F; Hao P; Zhou W; Liu Y
    Appl Opt; 2017 Sep; 56(25):7188-7193. PubMed ID: 29047980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.
    Yih JN; Hu YY; Sie YD; Cheng LC; Lien CH; Chen SJ
    Opt Lett; 2014 Jun; 39(11):3134-7. PubMed ID: 24875995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cascaded, self-calibrated, single-pixel mid-infrared Hadamard transform spectrometer.
    Lim ZH; Qi Y; Zhou G; Senthil Kumar A; Lee C; Zhou G
    Opt Express; 2021 Oct; 29(21):34600-34615. PubMed ID: 34809246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Digital micromirror devices: principles and applications in imaging.
    Bansal V; Saggau P
    Cold Spring Harb Protoc; 2013 May; 2013(5):404-11. PubMed ID: 23637366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective multiplex advantage with an electro-optic Hadamard transform spectrometer for multielemental atomic emission.
    Tilotta DC; Fry RC; Fateley WG
    Talanta; 1990 Jan; 37(1):53-60. PubMed ID: 18964916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device.
    Riza NA; Sumriddetchkajorn S
    Opt Lett; 1999 Mar; 24(5):282-4. PubMed ID: 18071480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Design and implementation of a long wavelength near infrared spectrometer based on MEMS scanning mirror].
    Ye KT; Dong TY; He WX; Li YX; Cheng XM; Li GY; Li HY; Xu HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2858-62. PubMed ID: 25739238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device.
    Hoffmann M; Papadopoulos IN; Judkewitz B
    Opt Lett; 2018 Jan; 43(1):22-25. PubMed ID: 29328187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Programmable single-pixel-based broadband stimulated Raman scattering.
    Berto P; Scotté C; Galland F; Rigneault H; de Aguiar HB
    Opt Lett; 2017 May; 42(9):1696-1699. PubMed ID: 28454138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a Hadamard-coded photodiode-array spectrometer under low illumination.
    Robichaud JL; Wong WK; Van Tassel RA
    Appl Opt; 1994 Jan; 33(1):75-81. PubMed ID: 20861991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High resolution hadamard transform spectrometer.
    Hansen P; Strong J
    Appl Opt; 1972 Mar; 11(3):502-6. PubMed ID: 20111540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterodyne Fourier transform spectrometer for the near- infrared region.
    Hirai A; Matsumoto H; Lin D; Tagaki C
    Opt Express; 2003 Jun; 11(11):1258-64. PubMed ID: 19465992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography.
    Jin D; Zhou R; Yaqoob Z; So PTC
    Opt Express; 2018 Jan; 26(1):428-437. PubMed ID: 29328319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.