BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22250968)

  • 1. Ethanol reforming on Co(0001) surfaces: a density functional theory study.
    Ma Y; Hernández L; Guadarrama-Pérez C; Balbuena PB
    J Phys Chem A; 2012 Feb; 116(5):1409-16. PubMed ID: 22250968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu(111): density functional theory studies.
    Lin S; Johnson RS; Smith GK; Xie D; Guo H
    Phys Chem Chem Phys; 2011 May; 13(20):9622-31. PubMed ID: 21487630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic oxidation of methanol to formic acid on Au20-: a theoretical study on the reaction mechanism.
    Bobuatong K; Karanjit S; Fukuda R; Ehara M; Sakurai H
    Phys Chem Chem Phys; 2012 Mar; 14(9):3103-11. PubMed ID: 22286101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces.
    Lim KH; Chen ZX; Neyman KM; Rösch N
    J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts.
    Guil JM; Homs N; Llorca J; Ramírez de la Piscina P
    J Phys Chem B; 2005 Jun; 109(21):10813-9. PubMed ID: 16852315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CF₃I synthesis catalyzed by activated carbon: a density functional theory study.
    Hu Y; Wu T; Liu W; Zhang L; Pan R
    J Phys Chem A; 2014 Mar; 118(10):1918-26. PubMed ID: 24491216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.
    Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL
    J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO2 reforming of CH4 on Ni(111): a density functional theory calculation.
    Wang SG; Cao DB; Li YW; Wang J; Jiao H
    J Phys Chem B; 2006 May; 110(20):9976-83. PubMed ID: 16706455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative density functional study of methanol decomposition on Cu4 and Co4 clusters.
    Mehmood F; Greeley J; Zapol P; Curtiss LA
    J Phys Chem B; 2010 Nov; 114(45):14458-66. PubMed ID: 20704288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CO formation reaction pathway in steam methane reforming by rhodium.
    van Grootel PW; Hensen EJ; van Santen RA
    Langmuir; 2010 Nov; 26(21):16339-48. PubMed ID: 20919687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111).
    Jiang R; Guo W; Li M; Lu X; Yuan J; Shan H
    Phys Chem Chem Phys; 2010 Jul; 12(28):7794-803. PubMed ID: 20485803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theory study of ethanol decomposition on 3Ni/α-Al₂O₃(0001) surface.
    Chiang HN; Wang CC; Cheng YC; Jiang JC; Hsieh HM
    Langmuir; 2010 Oct; 26(20):15845-51. PubMed ID: 20839873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical study of reactivity trends for methanol on Co/Pt(111) and Ni/Pt(111) bimetallic surfaces.
    Skoplyak O; Menning CA; Barteau MA; Chen JG
    J Chem Phys; 2007 Sep; 127(11):114707. PubMed ID: 17887870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive paths for methanol decomposition on Pt(111).
    Greeley J; Mavrikakis M
    J Am Chem Soc; 2004 Mar; 126(12):3910-9. PubMed ID: 15038745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory study of the oxidation of methanol to formaldehyde on a hydrated vanadia cluster.
    González-Navarrete P; Gracia L; Calatayud M; Andrés J
    J Comput Chem; 2010 Oct; 31(13):2493-501. PubMed ID: 20652991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic study on disproportionations of C1 aldehydes in supercritical water: methanol from formaldehyde and formic acid.
    Morooka S; Matubayasi N; Nakahara M
    J Phys Chem A; 2007 Apr; 111(14):2697-705. PubMed ID: 17388377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction pathways for ethanol on model Co/ZnO(0001) catalysts.
    Martono E; Hyman MP; Vohs JM
    Phys Chem Chem Phys; 2011 May; 13(20):9880-6. PubMed ID: 21475754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic mechanism of methanol decomposition on Ni(111) surface: a theoretical study.
    Wang GC; Zhou YH; Morikawa Y; Nakamura J; Cai ZS; Zhao XZ
    J Phys Chem B; 2005 Jun; 109(25):12431-42. PubMed ID: 16852538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface composition of materials used as catalysts for methanol steam reforming: a theoretical study.
    Lim KH; Moskaleva LV; Rösch N
    Chemphyschem; 2006 Aug; 7(8):1802-12. PubMed ID: 16807960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the reactions of small neutral iron oxide clusters with methanol.
    Xie Y; Dong F; Heinbuch S; Rocca JJ; Bernstein ER
    J Chem Phys; 2009 Mar; 130(11):114306. PubMed ID: 19317538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.