BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 22251001)

  • 1. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus.
    Yeom SJ; Kim BN; Kim YS; Oh DK
    J Agric Food Chem; 2012 Feb; 60(6):1535-41. PubMed ID: 22251001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of a highly-active thermophilic β-glucosidase from Neosartorya fischeri P1 and its application in the hydrolysis of soybean isoflavone glycosides.
    Yang X; Ma R; Shi P; Huang H; Bai Y; Wang Y; Yang P; Fan Y; Yao B
    PLoS One; 2014; 9(9):e106785. PubMed ID: 25188254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones.
    Yan FY; Xia W; Zhang XX; Chen S; Nie XZ; Qian LC
    J Zhejiang Univ Sci B; 2016 Jun; 17(6):455-64. PubMed ID: 27256679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones.
    Kondo T; Sibponkrung S; Hironao KY; Tittabutr P; Boonkerd N; Ishikawa S; Ashida H; Teaumroong N; Yoshida KI
    J Gen Appl Microbiol; 2023 Dec; 69(3):175-183. PubMed ID: 36858546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a novel cold-adapted GH1 β-glucosidase from
    He J; Duan J; Yu P; Li Y; Wang M; Zhang X; Chen Z; Shi P
    Curr Res Food Sci; 2024; 8():100777. PubMed ID: 38840809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hotspot Wizard-informed engineering of a hyperthermophilic β-glucosidase for enhanced enzyme activity at low temperatures.
    Erkanli ME; El-Halabi K; Kang TK; Kim JR
    Biotechnol Bioeng; 2024 Jul; 121(7):2079-2090. PubMed ID: 38682557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of the Thermostable β-Glucosidase-Secreting Strain Bacillus altitudinis JYY-02 and Its Application in the Production of Gardenia Blue.
    Yang J; Wang C; Guo Q; Deng W; Du G; Li R
    Microbiol Spectr; 2022 Aug; 10(4):e0153522. PubMed ID: 35863007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation in the hyperthermophilic archaeon Pyrococcus furiosus: coordinated expression of divergently oriented genes in response to beta-linked glucose polymers.
    Voorhorst WG; Gueguen Y; Geerling AC; Schut G; Dahlke I; Thomm M; van der Oost J; de Vos WM
    J Bacteriol; 1999 Jun; 181(12):3777-83. PubMed ID: 10368153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolase and glycosynthase activity of endo-1,3-beta-glucanase from the thermophile Pyrococcus furiosus.
    van Lieshout J; Faijes M; Nieto J; van der Oost J; Planas A
    Archaea; 2004 Oct; 1(4):285-92. PubMed ID: 15810439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of antioxidant and isoflavones concentration in gamma irradiated soybean.
    Popović BM; Stajner D; Mandić A; Canadanović-Brunet J; Kevrešan S
    ScientificWorldJournal; 2013; 2013():383574. PubMed ID: 24298214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ultrasound assisted extraction upon the Genistin and Daidzin contents of resultant soymilk.
    Fahmi R; Khodaiyan F; Pourahmad R; Emam-Djomeh Z
    J Food Sci Technol; 2014 Oct; 51(10):2857-61. PubMed ID: 25328238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly glucose-tolerant GH1 β-glucosidase with greater conversion rate of soybean isoflavones in monogastric animals.
    Cao H; Zhang Y; Shi P; Ma R; Yang H; Xia W; Cui Y; Luo H; Bai Y; Yao B
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):369-378. PubMed ID: 29744673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evolution of enzyme temperature activity profile: selection in vivo and characterization of low-temperature-adapted mutants of Pyrococcus furiosus ornithine carbamoyltransferase.
    Roovers M; Sanchez R; Legrain C; Glansdorff N
    J Bacteriol; 2001 Feb; 183(3):1101-5. PubMed ID: 11208811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Biotransformation of Phenolic Glycosides Using a Recombinant β
    Qu Y; Luo Y; Yang X; Zhang Y; Yang E; Xu H; He Y; Chagan I; Yan J
    Front Microbiol; 2022; 13():762502. PubMed ID: 35663869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic basis of thermostability of prolyl oligopeptidase from Pyrococcus furiosus.
    Banerjee S; Gupta PSS; Islam RNU; Bandyopadhyay AK
    Sci Rep; 2021 Jun; 11(1):11553. PubMed ID: 34078944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for the highly efficient biotransformation of genistein from genistin using a high-speed counter-current chromatography bioreactor.
    Wang D; Khan MS; Cui L; Song X; Zhu H; Ma T; Li X; Sun R
    RSC Adv; 2019 Feb; 9(9):4892-4899. PubMed ID: 35514623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Thermophilic Nitrilase from an Antarctic Hyperthermophilic Microorganism.
    Dennett GV; Blamey JM
    Front Bioeng Biotechnol; 2016; 4():5. PubMed ID: 26973832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a Novel Hyperthermophilic GH1 β-Glucosidase from
    He J; Li Y; Sun X; Zuo D; Wang M; Zheng X; Yu P; Shi P
    Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and insight mechanism of an acid-adapted β-Glucosidase from
    Xie Y; Yan X; Li C; Wang S; Jia L
    Front Bioeng Biotechnol; 2024; 12():1334695. PubMed ID: 38333082
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.