BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22251248)

  • 1. Promoting nerve cell functions on hydrogels grafted with poly(L-lysine).
    Cai L; Lu J; Sheen V; Wang S
    Biomacromolecules; 2012 Feb; 13(2):342-9. PubMed ID: 22251248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal poly(L-lysine) grafting density in hydrogels for promoting neural progenitor cell functions.
    Cai L; Lu J; Sheen V; Wang S
    Biomacromolecules; 2012 May; 13(5):1663-74. PubMed ID: 22533450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lubricated biodegradable polymer networks for regulating nerve cell behavior and fabricating nerve conduits with a compositional gradient.
    Cai L; Lu J; Sheen V; Wang S
    Biomacromolecules; 2012 Feb; 13(2):358-68. PubMed ID: 22206477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation.
    Wang J; Tian L; Chen N; Ramakrishna S; Mo X
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():715-726. PubMed ID: 30033306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photopolymerized poly(ethylene glycol)/poly(L-lysine) hydrogels for the delivery of neural progenitor cells.
    Royce Hynes S; McGregor LM; Ford Rauch M; Lavik EB
    J Biomater Sci Polym Ed; 2007; 18(8):1017-30. PubMed ID: 17705996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation.
    Hynes SR; Rauch MF; Bertram JP; Lavik EB
    J Biomed Mater Res A; 2009 May; 89(2):499-509. PubMed ID: 18435406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradable poly(amidoamine) hydrogels as scaffolds for in vitro culturing of peripheral nervous system cells.
    Mauro N; Manfredi A; Ranucci E; Procacci P; Laus M; Antonioli D; Mantovani C; Magnaghi V; Ferruti P
    Macromol Biosci; 2013 Mar; 13(3):332-47. PubMed ID: 23239646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells.
    Seeto WJ; Tian Y; Lipke EA
    Acta Biomater; 2013 Sep; 9(9):8279-89. PubMed ID: 23770139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile lysine dendrigrafts and polyethylene glycol hydrogels with inherent biological properties: in vitro cell behavior modulation and in vivo biocompatibility.
    Carrancá M; Griveau L; Remoué N; Lorion C; Weiss P; Orea V; Sigaudo-Roussel D; Faye C; Ferri-Angulo D; Debret R; Sohier J
    J Biomed Mater Res A; 2021 Jun; 109(6):926-937. PubMed ID: 32779367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocured biodegradable polymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation.
    Cai L; Zhang L; Dong J; Wang S
    Langmuir; 2012 Aug; 28(34):12557-68. PubMed ID: 22857011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryopreserved chondrocytes in porous biomaterials with surface elastin and poly-L-lysine for cartilage regeneration.
    Lyu SR; Kuo YC; Ku HF; Hsieh WH
    Colloids Surf B Biointerfaces; 2013 Mar; 103():304-9. PubMed ID: 23261552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential adhesiveness and neurite-promoting activity for neural cells of chitosan, gelatin, and poly-L-lysine films.
    Martín-López E; Nieto-Díaz M; Nieto-Sampedro M
    J Biomater Appl; 2012 Mar; 26(7):791-809. PubMed ID: 20876636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels.
    Zhong C; Wu J; Reinhart-King CA; Chu CC
    Acta Biomater; 2010 Oct; 6(10):3908-18. PubMed ID: 20416406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration.
    Guarino V; Alvarez-Perez MA; Borriello A; Napolitano T; Ambrosio L
    Adv Healthc Mater; 2013 Jan; 2(1):218-27. PubMed ID: 23184787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface.
    He L; Lin D; Wang Y; Xiao Y; Che J
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):273-9. PubMed ID: 21676598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G
    Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of poly(L-lysine), poly(acrylic acid) and poly(ethylene glycol) on the adhesion, proliferation and chondrogenic differentiation of human mesenchymal stem cells.
    Lu H; Guo L; Kawazoe N; Tateishi T; Chen G
    J Biomater Sci Polym Ed; 2009; 20(5-6):577-89. PubMed ID: 19323877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds as a cell delivery vehicle: characterization of PC12 cell response.
    Zustiak SP; Pubill S; Ribeiro A; Leach JB
    Biotechnol Prog; 2013; 29(5):1255-64. PubMed ID: 24474590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels.
    Krsko P; McCann TE; Thach TT; Laabs TL; Geller HM; Libera MR
    Biomaterials; 2009 Feb; 30(5):721-9. PubMed ID: 19026443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.