These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 22251270)
1. Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Kelly D; McAuliffe O; Ross RP; Coffey A Lett Appl Microbiol; 2012 Apr; 54(4):286-91. PubMed ID: 22251270 [TBL] [Abstract][Full Text] [Related]
2. Potential of bacteriophages as disinfectants to control of Staphylococcus aureus biofilms. Song J; Ruan H; Chen L; Jin Y; Zheng J; Wu R; Sun D BMC Microbiol; 2021 Feb; 21(1):57. PubMed ID: 33607940 [TBL] [Abstract][Full Text] [Related]
3. Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients. Drilling A; Morales S; Jardeleza C; Vreugde S; Speck P; Wormald PJ Am J Rhinol Allergy; 2014; 28(1):3-11. PubMed ID: 24717868 [TBL] [Abstract][Full Text] [Related]
4. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Alves DR; Gaudion A; Bean JE; Perez Esteban P; Arnot TC; Harper DR; Kot W; Hansen LH; Enright MC; Jenkins AT Appl Environ Microbiol; 2014 Nov; 80(21):6694-703. PubMed ID: 25149517 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Bacteriophage Anti-Biofilm Activity for Potential Control of Orthopedic Implant-Related Infections Caused by Staphylococcus aureus. Morris J; Kelly N; Elliott L; Grant A; Wilkinson M; Hazratwala K; McEwen P Surg Infect (Larchmt); 2019 Jan; 20(1):16-24. PubMed ID: 30207891 [TBL] [Abstract][Full Text] [Related]
6. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Suresh MK; Biswas R; Biswas L Int J Med Microbiol; 2019 Jan; 309(1):1-12. PubMed ID: 30503373 [TBL] [Abstract][Full Text] [Related]
8. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Rahman M; Kim S; Kim SM; Seol SY; Kim J Biofouling; 2011 Nov; 27(10):1087-93. PubMed ID: 22050201 [TBL] [Abstract][Full Text] [Related]
9. [Combination utility of phages GH15 and K against Staphylococcus aureus]. Liu X; Gu J; Han W; Li Y; Han D; Zhang Q; Lu R; Song J; Feng X; Lei L Wei Sheng Wu Xue Bao; 2013 May; 53(5):498-506. PubMed ID: 23957155 [TBL] [Abstract][Full Text] [Related]
10. Development of a High-Throughput Alves DR; Booth SP; Scavone P; Schellenberger P; Salvage J; Dedi C; Thet NT; Jenkins ATA; Waters R; Ng KW; Overall ADJ; Metcalfe AD; Nzakizwanayo J; Jones BV Front Cell Infect Microbiol; 2018; 8():196. PubMed ID: 29963501 [TBL] [Abstract][Full Text] [Related]
11. Bacteriophage ISP eliminates Staphylococcus aureus in planktonic phase, but not in the various stages of the biofilm cycle. Verheul M; Mulder AA; van Dun SCJ; Merabishvili M; Nelissen RGHH; de Boer MGJ; Pijls BG; Nibbering PH Sci Rep; 2024 Jun; 14(1):14374. PubMed ID: 38909125 [TBL] [Abstract][Full Text] [Related]
12. The Behavior of Staphylococcus aureus Dual-Species Biofilms Treated with Bacteriophage phiIPLA-RODI Depends on the Accompanying Microorganism. González S; Fernández L; Campelo AB; Gutiérrez D; Martínez B; Rodríguez A; García P Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27836851 [TBL] [Abstract][Full Text] [Related]
13. Safety and efficacy of topical bacteriophage and ethylenediaminetetraacetic acid treatment of Staphylococcus aureus infection in a sheep model of sinusitis. Drilling A; Morales S; Boase S; Jervis-Bardy J; James C; Jardeleza C; Tan NC; Cleland E; Speck P; Vreugde S; Wormald PJ Int Forum Allergy Rhinol; 2014 Mar; 4(3):176-86. PubMed ID: 24449635 [TBL] [Abstract][Full Text] [Related]
14. Phage release from biofilm and planktonic Staphylococcus aureus cells. Resch A; Fehrenbacher B; Eisele K; Schaller M; Götz F FEMS Microbiol Lett; 2005 Nov; 252(1):89-96. PubMed ID: 16213676 [TBL] [Abstract][Full Text] [Related]
15. Prevention and treatment of Staphylococcus aureus biofilms. Bhattacharya M; Wozniak DJ; Stoodley P; Hall-Stoodley L Expert Rev Anti Infect Ther; 2015; 13(12):1499-516. PubMed ID: 26646248 [TBL] [Abstract][Full Text] [Related]
16. 3-Amino-4-aminoximidofurazan derivatives: small molecules possessing antimicrobial and antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa. Das MC; Paul S; Gupta P; Tribedi P; Sarkar S; Manna D; Bhattacharjee S J Appl Microbiol; 2016 Apr; 120(4):842-59. PubMed ID: 26785169 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Son JS; Lee SJ; Jun SY; Yoon SJ; Kang SH; Paik HR; Kang JO; Choi YJ Appl Microbiol Biotechnol; 2010 May; 86(5):1439-49. PubMed ID: 20013118 [TBL] [Abstract][Full Text] [Related]
18. Synergistic action of phage phiIPLA-RODI and lytic protein CHAPSH3b: a combination strategy to target Staphylococcus aureus biofilms. Duarte AC; Fernández L; De Maesschalck V; Gutiérrez D; Campelo AB; Briers Y; Lavigne R; Rodríguez A; García P NPJ Biofilms Microbiomes; 2021 Apr; 7(1):39. PubMed ID: 33888725 [TBL] [Abstract][Full Text] [Related]