These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 22251730)
1. Grapevine genotype susceptibility to Xylella fastidiosa does not predict vector transmission success. Rashed A; Daugherty MP; Almeida RP Environ Entomol; 2011 Oct; 40(5):1192-9. PubMed ID: 22251730 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal colonization of Xylella fastidiosa in its vector supports the role of egestion in the inoculation mechanism of foregut-borne plant pathogens. Backus EA; Morgan DJ Phytopathology; 2011 Aug; 101(8):912-22. PubMed ID: 21425930 [TBL] [Abstract][Full Text] [Related]
3. Detection and analysis of the bacterium, Xylella fastidiosa, in glassy-winged sharpshooter, Homalodisca vitripennis, populations in Texas. Hail D; Mitchell F; Lauzière I; Marshall P; Brady J; Bextine B J Insect Sci; 2010; 10():168. PubMed ID: 21062210 [TBL] [Abstract][Full Text] [Related]
4. Transmission of Xylella fastidiosa to Grapevine by the Meadow Spittlebug. Cornara D; Sicard A; Zeilinger AR; Porcelli F; Purcell AH; Almeida RP Phytopathology; 2016 Nov; 106(11):1285-1290. PubMed ID: 27392174 [TBL] [Abstract][Full Text] [Related]
5. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Redak RA; Purcell AH; Lopes JR; Blua MJ; Mizell RF; Andersen PC Annu Rev Entomol; 2004; 49():243-70. PubMed ID: 14651464 [TBL] [Abstract][Full Text] [Related]
6. Salivary enzymes are injected into xylem by the glassy-winged sharpshooter, a vector of Xylella fastidiosa. Backus EA; Andrews KB; Shugart HJ; Carl Greve L; Labavitch JM; Alhaddad H J Insect Physiol; 2012 Jul; 58(7):949-59. PubMed ID: 22587965 [TBL] [Abstract][Full Text] [Related]
7. Assessment of the process of movement of Xylella fastidiosa within susceptible and resistant grape cultivars. Baccari C; Lindow SE Phytopathology; 2011 Jan; 101(1):77-84. PubMed ID: 20822432 [TBL] [Abstract][Full Text] [Related]
8. Modeling cold curing of Pierce's disease in Vitis vinifera 'Pinot Noir' and 'Cabernet Sauvignon' grapevines in California. Lieth JH; Meyer MM; Yeo KH; Kirkpatrick BC Phytopathology; 2011 Dec; 101(12):1492-500. PubMed ID: 22070280 [TBL] [Abstract][Full Text] [Related]
9. Detection of the bacterium, Xylella fastidiosa, in saliva of glassy-winged sharpshooter, Homalodisca vitripennis. Ramirez JL; Lacava PT; Miller TA J Insect Sci; 2008; 8():1-7. PubMed ID: 20233080 [TBL] [Abstract][Full Text] [Related]
10. Relative susceptibility of Vitis vinifera cultivars to vector-borne Xylella fastidiosa through time. Rashed A; Kwan J; Baraff B; Ling D; Daugherty MP; Killiny N; Almeida RP PLoS One; 2013; 8(2):e55326. PubMed ID: 23424629 [TBL] [Abstract][Full Text] [Related]
11. Transmission of Xylella fastidiosa to grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae). Almeida RP; Purcell AH J Econ Entomol; 2003 Apr; 96(2):264-71. PubMed ID: 14994789 [TBL] [Abstract][Full Text] [Related]
12. Targeted Mutations in Xylella fastidiosa Affect Acquisition and Retention by the Glassy-Winged Sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). Sengoda VG; Shi X; Krugner R; Backus EA; Lin H J Econ Entomol; 2020 Apr; 113(2):612-621. PubMed ID: 31903491 [TBL] [Abstract][Full Text] [Related]
13. Leaf scorch symptoms are not correlated with bacterial populations during Pierce's disease. Gambetta GA; Fei J; Rost TL; Matthews MA J Exp Bot; 2007; 58(15-16):4037-46. PubMed ID: 18037677 [TBL] [Abstract][Full Text] [Related]
14. Grapevine phenolic compounds in xylem sap and tissues are significantly altered during infection by Xylella fastidiosa. Wallis CM; Chen J Phytopathology; 2012 Sep; 102(9):816-26. PubMed ID: 22671027 [TBL] [Abstract][Full Text] [Related]
15. Understanding How an Invasive Vector Drives Pierce's Disease Epidemics: Seasonality and Vine-to-Vine Spread. Daugherty MP; Almeida RPP Phytopathology; 2019 Feb; 109(2):277-285. PubMed ID: 30451633 [TBL] [Abstract][Full Text] [Related]
16. Plant water stress effects on the net dispersal rate of the insect vector Homalodisca vitripennis (Hemiptera: Cicadellidae) and movement of its egg parasitoid, Gonatocerus ashmeadi (Hymenoptera: Mymaridae). Krugner R; Hagler JR; Groves RL; Sisterson MS; Morse JG; Johnson MW Environ Entomol; 2012 Dec; 41(6):1279-89. PubMed ID: 23321075 [TBL] [Abstract][Full Text] [Related]
17. Seasonal increase of Xylella fastidiosa in hemiptera collected from central Texas vineyards. Mitchell FL; Brady J; Bextine B; Lauzière I J Econ Entomol; 2009 Oct; 102(5):1743-9. PubMed ID: 19886437 [TBL] [Abstract][Full Text] [Related]
18. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce's disease. Lindow S; Newman K; Chatterjee S; Baccari C; Lavarone AT; Ionescu M Mol Plant Microbe Interact; 2014 Mar; 27(3):244-54. PubMed ID: 24499029 [TBL] [Abstract][Full Text] [Related]
19. Plant water stress effects on stylet probing behaviors of Homalodisca vitripennis (Hemiptera: Cicadellidae) associated with acquisition and inoculation of the bacterium Xylella fastidiosa. Krugner R; Backus EA J Econ Entomol; 2014 Feb; 107(1):66-74. PubMed ID: 24665686 [TBL] [Abstract][Full Text] [Related]
20. The exopolysaccharide of Xylella fastidiosa is essential for biofilm formation, plant virulence, and vector transmission. Killiny N; Martinez RH; Dumenyo CK; Cooksey DA; Almeida RP Mol Plant Microbe Interact; 2013 Sep; 26(9):1044-53. PubMed ID: 23678891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]