These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22251846)

  • 1. A minimally invasive jet injector for intravitreal and subconjunctival injection.
    Peyman GA; Hosseini K; Cormier M
    Ophthalmic Surg Lasers Imaging; 2012; 43(1):57-62. PubMed ID: 22251846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined intravitreal and subconjunctival carboplatin for retinoblastoma with vitreous seeds.
    Smith SJ; Pulido JS; Salomão DR; Smith BD; Mohney B
    Br J Ophthalmol; 2012 Aug; 96(8):1073-7. PubMed ID: 22368261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Pyro-Drive Jet Injector With Controllable Jet Pressure.
    Miyazaki H; Atobe S; Suzuki T; Iga H; Terai K
    J Pharm Sci; 2019 Jul; 108(7):2415-2420. PubMed ID: 30849461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Lorentz-force actuated intravitreal jet injector.
    White JE; Chang JH; Hogan NC; Hunter IW
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():984-7. PubMed ID: 23366059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of pegaptanib loss during intravitreal delivery using an oblique injection technique.
    Lopez-Guajardo L; Del Valle FG; Moreno JP; Teus MA
    Eye (Lond); 2008 Mar; 22(3):430-3. PubMed ID: 18202711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic control of needle-free jet injection.
    Stachowiak JC; Li TH; Arora A; Mitragotri S; Fletcher DA
    J Control Release; 2009 Apr; 135(2):104-12. PubMed ID: 19284969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jet injection devices for the needle-free administration of compounds, vaccines, and other agents.
    Logomasini MA; Stout RR; Marcinkoski R
    Int J Pharm Compd; 2013; 17(4):270-80. PubMed ID: 24261141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intravitreal sustained-release dexamethasone device in the treatment of experimental uveitis.
    Cheng CK; Berger AS; Pearson PA; Ashton P; Jaffe GJ
    Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):442-53. PubMed ID: 7843913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocular tissue distribution and pharmacokinetic study of a small 13kDa domain antibody after intravitreal, subconjuctival and eye drop administration in rabbits.
    Gough G; Szapacs M; Shah T; Clements P; Struble C; Wilson R
    Exp Eye Res; 2018 Feb; 167():14-17. PubMed ID: 29074387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel, minimally invasive implant to assist in repeated intraocular drug delivery.
    Chawla R; Bhattacharyya J; Moksha L; Phour A; Velpandian T; Kashyap S; Kalyanasundaram D
    Biomed Microdevices; 2022 May; 24(2):17. PubMed ID: 35587289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tower microneedle minimizes vitreal reflux in intravitreal injection.
    Lee CY; You YS; Lee SH; Jung H
    Biomed Microdevices; 2013 Oct; 15(5):841-8. PubMed ID: 23666517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intraocular penetration and retinal toxicity of teicoplanin.
    Carney M; Kao G; Peyman GA; Fiscella R; Staneck J
    Ophthalmic Surg; 1988 Feb; 19(2):119-23. PubMed ID: 2964586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic behavior of a spring-powered micronozzle needle-free injector.
    Schoubben A; Cavicchi A; Barberini L; Faraon A; Berti M; Ricci M; Blasi P; Postrioti L
    Int J Pharm; 2015 Aug; 491(1-2):91-8. PubMed ID: 26027490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide.
    Robinson MR; Lee SS; Kim H; Kim S; Lutz RJ; Galban C; Bungay PM; Yuan P; Wang NS; Kim J; Csaky KG
    Exp Eye Res; 2006 Mar; 82(3):479-87. PubMed ID: 16168412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A randomized, dose-escalation study of subconjunctival and intravitreal injections of sirolimus in patients with diabetic macular edema.
    Dugel PU; Blumenkranz MS; Haller JA; Williams GA; Solley WA; Kleinman DM; Naor J
    Ophthalmology; 2012 Jan; 119(1):124-31. PubMed ID: 22115710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of subconjunctival delivery with model ionic permeants and magnetic resonance imaging.
    Li SK; Molokhia SA; Jeong EK
    Pharm Res; 2004 Dec; 21(12):2175-84. PubMed ID: 15648248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraocular dexamethasone penetration via subconjunctival or retrobulbar injections in rabbits.
    Bodker FS; Ticho BH; Feist RM; Lam TT
    Ophthalmic Surg; 1993 Jul; 24(7):453-7. PubMed ID: 8351091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The difficulty of determining the route of intraocular penetration of gentamicin after subconjunctival injection in the rabbit.
    Barza M; Kane A; Baum J
    Invest Ophthalmol Vis Sci; 1981 Apr; 20(4):509-14. PubMed ID: 7216668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraocular penetration of periocular ketorolac and efficacy in experimental uveitis.
    Rabiah PK; Fiscella RG; Tessler HH
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):613-8. PubMed ID: 8595961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of needle-assisted jet injections.
    Li X; Ruddy B; Taberner A
    J Control Release; 2016 Dec; 243():195-203. PubMed ID: 27746273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.