BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 22252036)

  • 21. Internal dynamics of microgels: A mesoscale hydrodynamic simulation study.
    Ghavami A; Kobayashi H; Winkler RG
    J Chem Phys; 2016 Dec; 145(24):244902. PubMed ID: 28049314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles: their characterization and the uptake and release of an anionic surfactant.
    Bradley M; Vincent B
    Langmuir; 2008 Mar; 24(6):2421-5. PubMed ID: 18294014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core-shell-shell and hollow double-shell microgels with advanced temperature responsiveness.
    Dubbert J; Nothdurft K; Karg M; Richtering W
    Macromol Rapid Commun; 2015 Jan; 36(2):159-64. PubMed ID: 25354836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural properties of thermoresponsive poly(N-isopropylacrylamide)-poly(ethyleneglycol) microgels.
    Clara-Rahola J; Fernandez-Nieves A; Sierra-Martin B; South AB; Lyon LA; Kohlbrecher J; Fernandez Barbero A
    J Chem Phys; 2012 Jun; 136(21):214903. PubMed ID: 22697568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium.
    Dalmont H; Pinprayoon O; Saunders BR
    Langmuir; 2008 Mar; 24(6):2834-40. PubMed ID: 18290684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glucose-responsive microgels with a core-shell structure.
    Lapeyre V; Ancla C; Catargi B; Ravaine V
    J Colloid Interface Sci; 2008 Nov; 327(2):316-23. PubMed ID: 18804779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of cations on the sorting of oppositely charged microgels.
    Hou Y; Ye J; Wei X; Zhang G
    J Phys Chem B; 2009 May; 113(21):7457-61. PubMed ID: 19456173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of multiresponsive "intelligent" core-shell microgels.
    Berndt I; Pedersen JS; Richtering W
    J Am Chem Soc; 2005 Jul; 127(26):9372-3. PubMed ID: 15984856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the structure of poly(N-isopropylacrylamide) microgel particles.
    Saunders BR
    Langmuir; 2004 May; 20(10):3925-32. PubMed ID: 15969381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of the structure on the collapse of poly(N-isopropylacrylamide)-based microgels: an insight by quantitative dielectric analysis.
    Yang M; Zhao K
    Soft Matter; 2016 May; 12(18):4093-102. PubMed ID: 27035253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is the Microgel Collapse a Two-Step Process? Exploiting Cononsolvency to Probe the Collapse Dynamics of Poly-
    Nothdurft K; Müller DH; Mürtz SD; Meyer AA; Guerzoni LPB; Jans A; Kühne AJC; De Laporte L; Brands T; Bardow A; Richtering W
    J Phys Chem B; 2021 Feb; 125(5):1503-1512. PubMed ID: 33503378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inner structure and dynamics of microgels with low and medium crosslinker content prepared via surfactant-free precipitation polymerization and continuous monomer feeding approach.
    Kyrey T; Witte J; Feoktystov A; Pipich V; Wu B; Pasini S; Radulescu A; Witt MU; Kruteva M; von Klitzing R; Wellert S; Holderer O
    Soft Matter; 2019 Aug; 15(32):6536-6546. PubMed ID: 31355828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FRET-derived ratiometric fluorescent K+ sensors fabricated from thermoresponsive poly(N-isopropylacrylamide) microgels labeled with crown ether moieties.
    Yin J; Li C; Wang D; Liu S
    J Phys Chem B; 2010 Sep; 114(38):12213-20. PubMed ID: 20825175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Equilibrium and kinetic aspects of the uptake of poly(ethylene oxide) by copolymer microgel particles of N-isopropylacrylamide and acrylic acid.
    Bradley M; Ramos J; Vincent B
    Langmuir; 2005 Feb; 21(4):1209-15. PubMed ID: 15697262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and properties of polyelectrolyte microgel particles.
    Nur H; Pinkrah VT; Mitchell JC; Benée LS; Snowden MJ
    Adv Colloid Interface Sci; 2010 Jul; 158(1-2):15-20. PubMed ID: 19712922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rearrangements in and release from responsive microgel-polyelectrolyte complexes induced by temperature and time.
    Kleinen J; Richtering W
    J Phys Chem B; 2011 Apr; 115(14):3804-10. PubMed ID: 21417490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microgel-encapsulated methylene blue for the treatment of breast cancer cells by photodynamic therapy.
    Khanal A; Bui MP; Seo SS
    J Breast Cancer; 2014 Mar; 17(1):18-24. PubMed ID: 24744793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavior of temperature-responsive copolymer microgels at the oil/water interface.
    Wu Y; Wiese S; Balaceanu A; Richtering W; Pich A
    Langmuir; 2014 Jul; 30(26):7660-9. PubMed ID: 24926817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Origin of cononsolvency, based on the structure of tetrahydrofuran-water mixture.
    Hao J; Cheng H; Butler P; Zhang L; Han CC
    J Chem Phys; 2010 Apr; 132(15):154902. PubMed ID: 20423196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salt effects in the cononsolvency of poly(N-isopropylacrylamide) microgels.
    López-León T; Bastos-González D; Ortega-Vinuesa JL; Elaïssari A
    Chemphyschem; 2010 Jan; 11(1):188-94. PubMed ID: 20033975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.