These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 22252244)

  • 41. Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.
    Currie KP
    Cell Mol Neurobiol; 2010 Nov; 30(8):1201-8. PubMed ID: 21061161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A two-step model for acetylcholine control of exocytosis via nicotinic receptors.
    Arnáiz-Cot JJ; de Diego AM; Hernández-Guijo JM; Gandía L; García AG
    Biochem Biophys Res Commun; 2008 Jan; 365(3):413-9. PubMed ID: 17981151
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The chromogranin A fragment catestatin: specificity, potency and mechanism to inhibit exocytotic secretion of multiple catecholamine storage vesicle co-transmitters.
    Mahapatra NR; Mahata M; Mahata SK; O'Connor DT
    J Hypertens; 2006 May; 24(5):895-904. PubMed ID: 16612252
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Different contributions of voltage-sensitive Ca2+ channels to histamine-induced catecholamine release and tyrosine hydroxylase activation in bovine adrenal chromaffin cells.
    O'Farrell M; Marley PD
    Cell Calcium; 1999 Mar; 25(3):209-17. PubMed ID: 10378082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stress-induced intercellular communication remodeling in the rat adrenal medulla.
    Colomer C; Lafont C; Guérineau NC
    Ann N Y Acad Sci; 2008 Dec; 1148():106-11. PubMed ID: 19120097
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gap junction signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo.
    Desarménien MG; Jourdan C; Toutain B; Vessières E; Hormuzdi SG; Guérineau NC
    Nat Commun; 2013; 4():2938. PubMed ID: 24356378
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence for paracrine signaling between macrophages and bovine adrenal chromaffin cell Ca(2+) channels.
    Currie KP; Zhou Z; Fox AP
    J Neurophysiol; 2000 Jan; 83(1):280-7. PubMed ID: 10634871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overexpression of P2X3 and P2X7 Receptors and TRPV1 Channels in Adrenomedullary Chromaffin Cells in a Rat Model of Neuropathic Pain.
    Arribas-Blázquez M; Olivos-Oré LA; Barahona MV; Sánchez de la Muela M; Solar V; Jiménez E; Gualix J; McIntosh JM; Ferrer-Montiel A; Miras-Portugal MT; Artalejo AR
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30609840
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual effects of nobiletin, a citrus polymethoxy flavone, on catecholamine secretion in cultured bovine adrenal medullary cells.
    Zhang H; Toyohira Y; Ueno S; Shinohara Y; Itoh H; Furuno Y; Yamakuni T; Tsutsui M; Takahashi K; Yanagihara N
    J Neurochem; 2010 Aug; 114(4):1030-8. PubMed ID: 20533991
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway.
    Kuri BA; Chan SA; Smith CB
    J Neurochem; 2009 Aug; 110(4):1214-25. PubMed ID: 19508428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for paracrine modulation of voltage-dependent calcium channels by amperometric analysis in cultured porcine adrenal chromaffin cells.
    Ohta T; Kai T; Ito S
    Brain Res; 2004 Dec; 1030(2):183-92. PubMed ID: 15571668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activation of angiotensin II subtype 2 receptor induces catecholamine release in an extracellular Ca(2+)-dependent manner through a decrease of cyclic guanosine 3',5'-monophosphate production in cultured porcine adrenal medullary chromaffin Cells.
    Takekoshi K; Ishii K; Kawakami Y; Isobe K; Nakai T
    Endocrinology; 2001 Jul; 142(7):3075-86. PubMed ID: 11416030
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Voltage inactivation of Ca2+ entry and secretion associated with N- and P/Q-type but not L-type Ca2+ channels of bovine chromaffin cells.
    Villarroya M; Olivares R; Ruíz A; Cano-Abad MF; de Pascual R; Lomax RB; López MG; Mayorgas I; Gandía L; García AG
    J Physiol; 1999 Apr; 516 ( Pt 2)(Pt 2):421-32. PubMed ID: 10087342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinct patterns of exocytosis elicited by Ca
    Baraibar AM; de Pascual R; Camacho M; Domínguez N; David Machado J; Gandía L; Borges R
    Pflugers Arch; 2018 Oct; 470(10):1459-1471. PubMed ID: 29926228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calcium dependency of muscarinic and nicotinic agonist-induced ATP and catecholamine secretion from porcine adrenal chromaffin cells.
    Xu YP; Duarte EP; Forsberg EJ
    J Neurochem; 1991 Jun; 56(6):1889-96. PubMed ID: 1851204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis?
    Comunanza V; Marcantoni A; Vandael DH; Mahapatra S; Gavello D; Carabelli V; Carbone E
    Channels (Austin); 2010; 4(6):440-6. PubMed ID: 21084859
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual Antidepressant Duloxetine Blocks Nicotinic Receptor Currents, Calcium Signals and Exocytosis in Chromaffin Cells Stimulated with Acetylcholine.
    Nanclares C; Gameiro-Ros I; Méndez-López I; Martínez-Ramírez C; Padín-Nogueira JF; Colmena I; Baraibar AM; Gandía L; García AG
    J Pharmacol Exp Ther; 2018 Oct; 367(1):28-39. PubMed ID: 30006476
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells.
    Vandael DH; Ottaviani MM; Legros C; Lefort C; Guérineau NC; Allio A; Carabelli V; Carbone E
    J Physiol; 2015 Feb; 593(4):905-27. PubMed ID: 25620605
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Blockade of nicotinic receptors of bovine adrenal chromaffin cells by nanomolar concentrations of atropine.
    González-Rubio JM; García de Diego AM; Egea J; Olivares R; Rojo J; Gandía L; García AG; Hernández-Guijo JM
    Eur J Pharmacol; 2006 Mar; 535(1-3):13-24. PubMed ID: 16530180
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inability of Ca2+ influx through nicotinic ACh receptor channels to stimulate catecholamine secretion in bovine adrenal chromaffin cells: studies with fura-2 and SBFI microfluorometry.
    Sorimachi M; Nishimura S; Yamagami K
    Jpn J Physiol; 1994; 44(4):343-56. PubMed ID: 7532728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.