These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2225232)

  • 21. Differentiation status of human renal proximal and distal tubular epithelial cells in vitro: Differential expression of characteristic markers.
    Baer PC; Bereiter-Hahn J; Schubert R; Geiger H
    Cells Tissues Organs; 2006; 184(1):16-22. PubMed ID: 17190976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of transport in chemical nephrotoxicity.
    Berndt WO
    Toxicol Pathol; 1998; 26(1):52-7. PubMed ID: 9502387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new approach to studying ochratoxin A (OTA)-induced nephrotoxicity: expression profiling in vivo and in vitro employing cDNA microarrays.
    Luhe A; Hildebrand H; Bach U; Dingermann T; Ahr HJ
    Toxicol Sci; 2003 Jun; 73(2):315-28. PubMed ID: 12700408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of cysteine conjugate beta-lyase and S-oxidase in nephrotoxicity: studies with S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine sulfoxide.
    Lash LH; Sausen PJ; Duescher RJ; Cooley AJ; Elfarra AA
    J Pharmacol Exp Ther; 1994 Apr; 269(1):374-83. PubMed ID: 8169843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures.
    Su R; Xiong S; Zink D; Loo LH
    Arch Toxicol; 2016 Nov; 90(11):2793-2808. PubMed ID: 26612367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enalaprilat directly ameliorates in vitro cyclosporin nephrotoxicity in human tubulo-interstitial cells.
    Johnson DW; Saunders HJ; Vesey DA; Qi W; Field MJ; Pollock CA
    Nephron; 2000 Dec; 86(4):473-81. PubMed ID: 11124597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nephrotoxicity and the proximal tubule. Insights from cadmium.
    Thévenod F
    Nephron Physiol; 2003; 93(4):p87-93. PubMed ID: 12759569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the mechanism of 4-aminophenol-induced toxicity to renal proximal tubules.
    Lock EA; Cross TJ; Schnellmann RG
    Hum Exp Toxicol; 1993 Sep; 12(5):383-8. PubMed ID: 7902115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Primary culture of proximal tubular cells (PTC) from normal mouse kidney as an in vitro model to study mechanisms of development of tubulointerstitial nephritis. Induction of ICAM-1 in PTC by antigen-primed lymphocytes].
    Hori J; Shiro U; Anzai N; Itoh K; Ogawa M; Ohto M; Wakashin Y; Wakashin M
    Nihon Jinzo Gakkai Shi; 1995 Mar; 37(3):157-64. PubMed ID: 7731103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parenteral iron nephrotoxicity: potential mechanisms and consequences.
    Zager RA; Johnson AC; Hanson SY
    Kidney Int; 2004 Jul; 66(1):144-56. PubMed ID: 15200421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods.
    Kandasamy K; Chuah JK; Su R; Huang P; Eng KG; Xiong S; Li Y; Chia CS; Loo LH; Zink D
    Sci Rep; 2015 Jul; 5():12337. PubMed ID: 26212763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Issues in the pathophysiology of nephrotoxic renal tubular cell injury pertinent to understanding cyclosporine nephrotoxicity.
    Weinberg JM
    Transplant Proc; 1985 Aug; 17(4 Suppl 1):81-90. PubMed ID: 3895674
    [No Abstract]   [Full Text] [Related]  

  • 33. Controversial role of gamma-glutamyl transferase activity in cisplatin nephrotoxicity.
    Fliedl L; Wieser M; Manhart G; Gerstl MP; Khan A; Grillari J; Grillari-Voglauer R
    ALTEX; 2014; 31(3):269-78. PubMed ID: 24664430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Guanidinoacetic acid (GAA) synthesis in rat tubular suspension as a system for evaluating gentamicin (GM) nephrotoxicity.
    Takeda M; Jung KY; Sekine T; Endou H; Koide H
    Toxicol Lett; 1995 Nov; 81(2-3):85-9. PubMed ID: 8553380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of nephrotoxic compounds with embryonic stem-cell-derived human renal proximal tubular-like cells.
    Li Y; Kandasamy K; Chuah JK; Lam YN; Toh WS; Oo ZY; Zink D
    Mol Pharm; 2014 Jul; 11(7):1982-90. PubMed ID: 24495215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A tubule cell model for ifosfamide nephrotoxicity.
    Aleksa K; Halachmi N; Ito S; Koren G
    Can J Physiol Pharmacol; 2005 Jun; 83(6):499-508. PubMed ID: 16049550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primary cultures of rat and rabbit renal proximal epithelium as models for nephrotoxicity investigations.
    Barron ET; O'Brien A; Ryan MP
    Toxicol Lett; 1990 Sep; 53(1-2):161-5. PubMed ID: 2219158
    [No Abstract]   [Full Text] [Related]  

  • 38. Comparison of the novel HK-2 human renal proximal tubular cell line with the standard LLC-PK1 cell line in studying drug-induced nephrotoxicity.
    Gunness P; Aleksa K; Kosuge K; Ito S; Koren G
    Can J Physiol Pharmacol; 2010 Apr; 88(4):448-55. PubMed ID: 20555413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro methods of assessing renal damage.
    Lash LH
    Toxicol Pathol; 1998; 26(1):33-42. PubMed ID: 9502385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Panax notoginseng saponins attenuated cisplatin-induced nephrotoxicity.
    Liu SJ; Zhou SW
    Acta Pharmacol Sin; 2000 Mar; 21(3):257-60. PubMed ID: 11324427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.