These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 22252631)
1. Characterization of glycosaminoglycans by tandem vibrational microspectroscopy and multivariate data analysis. Mainreck N; Brézillon S; Sockalingum GD; Maquart FX; Manfait M; Wegrowski Y Methods Mol Biol; 2012; 836():117-30. PubMed ID: 22252631 [TBL] [Abstract][Full Text] [Related]
2. Rapid characterization of glycosaminoglycans using a combined approach by infrared and Raman microspectroscopies. Mainreck N; Brézillon S; Sockalingum GD; Maquart FX; Manfait M; Wegrowski Y J Pharm Sci; 2011 Feb; 100(2):441-50. PubMed ID: 20653053 [TBL] [Abstract][Full Text] [Related]
3. Characterization of pollen by vibrational spectroscopy. Zimmermann B Appl Spectrosc; 2010 Dec; 64(12):1364-73. PubMed ID: 21144154 [TBL] [Abstract][Full Text] [Related]
4. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen. Bağcıoğlu M; Zimmermann B; Kohler A PLoS One; 2015; 10(9):e0137899. PubMed ID: 26376486 [TBL] [Abstract][Full Text] [Related]
5. Application of infrared microspectroscopy and multivariate analysis for monitoring the effect of adjunct cultures during Swiss cheese ripening. Chen G; Kocaoglu-Vurma NA; Harper WJ; Rodriguez-Saona LE J Dairy Sci; 2009 Aug; 92(8):3575-84. PubMed ID: 19620638 [TBL] [Abstract][Full Text] [Related]
6. Probing glycosaminoglycan spectral signatures in live cells and their conditioned media by Raman microspectroscopy. Brézillon S; Untereiner V; Mohamed HT; Hodin J; Chatron-Colliet A; Maquart FX; Sockalingum GD Analyst; 2017 Apr; 142(8):1333-1341. PubMed ID: 28352887 [TBL] [Abstract][Full Text] [Related]
7. Towards a detailed understanding of bacterial metabolism--spectroscopic characterization of Staphylococcus epidermidis. Neugebauer U; Schmid U; Baumann K; Ziebuhr W; Kozitskaya S; Deckert V; Schmitt M; Popp J Chemphyschem; 2007 Jan; 8(1):124-37. PubMed ID: 17146809 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of DNA methylation status using spectroscopy (mid-IR versus Raman) with multivariate analysis. Kelly JG; Najand GM; Martin FL J Biophotonics; 2011 May; 4(5):345-54. PubMed ID: 21520428 [TBL] [Abstract][Full Text] [Related]
9. An in-depth analysis of Raman and near-infrared chemical images of common pharmaceutical tablets. Sasić S Appl Spectrosc; 2007 Mar; 61(3):239-50. PubMed ID: 17389063 [TBL] [Abstract][Full Text] [Related]
10. C-H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (N = 1-8) interfaces. Lu R; Gan W; Wu BH; Zhang Z; Guo Y; Wang HF J Phys Chem B; 2005 Jul; 109(29):14118-29. PubMed ID: 16852773 [TBL] [Abstract][Full Text] [Related]
11. Raman spectroscopic signature of semen and its potential application to forensic body fluid identification. Virkler K; Lednev IK Forensic Sci Int; 2009 Dec; 193(1-3):56-62. PubMed ID: 19850425 [TBL] [Abstract][Full Text] [Related]
12. Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. Gorzsás A; Stenlund H; Persson P; Trygg J; Sundberg B Plant J; 2011 Jun; 66(5):903-14. PubMed ID: 21332846 [TBL] [Abstract][Full Text] [Related]
13. Detection of counterfeit Viagra® by Raman microspectroscopy imaging and multivariate analysis. Sacré PY; Deconinck E; Saerens L; De Beer T; Courselle P; Vancauwenberghe R; Chiap P; Crommen J; De Beer JO J Pharm Biomed Anal; 2011 Sep; 56(2):454-61. PubMed ID: 21715121 [TBL] [Abstract][Full Text] [Related]
14. Effect of sewage sludge treatment and additional aerobic post-stabilization revealed by infrared spectroscopy and multivariate data analysis. Smidt E; Parravicini V Bioresour Technol; 2009 Mar; 100(5):1775-80. PubMed ID: 19010667 [TBL] [Abstract][Full Text] [Related]
15. Multivariate analysis of infrared spectra for monitoring and understanding the kinetics and mechanisms of adsorption processes. Zhang A; Zeng W; Niemczyk TM; Keenan MR; Haaland DM Appl Spectrosc; 2005 Jan; 59(1):47-55. PubMed ID: 15720738 [TBL] [Abstract][Full Text] [Related]
16. Vibrational spectroscopy--a powerful tool for the rapid identification of microbial cells at the single-cell level. Harz M; Rösch P; Popp J Cytometry A; 2009 Feb; 75(2):104-13. PubMed ID: 19156822 [TBL] [Abstract][Full Text] [Related]
17. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Nicolaou N; Xu Y; Goodacre R Anal Chem; 2011 Jul; 83(14):5681-7. PubMed ID: 21639098 [TBL] [Abstract][Full Text] [Related]
18. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues. Huang Z; Lui H; McLean DI; Korbelik M; Zeng H Photochem Photobiol; 2005; 81(5):1219-26. PubMed ID: 15869327 [TBL] [Abstract][Full Text] [Related]
19. The use of optical spectroscopy in combinatorial chemistry. Gremlich HU Biotechnol Bioeng; 1998-1999; 61(3):179-87. PubMed ID: 10397805 [TBL] [Abstract][Full Text] [Related]
20. Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure. Zimmermann B; Bağcıoğlu M; Sandt C; Kohler A Planta; 2015 Nov; 242(5):1237-50. PubMed ID: 26289829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]