These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22252968)

  • 61. Functional responses from guinea pigs with cochlear implants. I. Electrophysiological and psychophysical measures.
    Miller CA; Woodruff KE; Pfingst BE
    Hear Res; 1995 Dec; 92(1-2):85-99. PubMed ID: 8647749
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Intracochlear drug delivery in combination with cochlear implants : Current aspects.
    Plontke SK; Götze G; Rahne T; Liebau A
    HNO; 2017 Jan; 65(Suppl 1):19-28. PubMed ID: 27933352
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response.
    Firszt JB; Chambers RD; Kraus And N; Reeder RM
    Ear Hear; 2002 Dec; 23(6):502-15. PubMed ID: 12476088
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrode array-eluted dexamethasone protects against electrode insertion trauma induced hearing and hair cell losses, damage to neural elements, increases in impedance and fibrosis: A dose response study.
    Bas E; Bohorquez J; Goncalves S; Perez E; Dinh CT; Garnham C; Hessler R; Eshraghi AA; Van De Water TR
    Hear Res; 2016 Jul; 337():12-24. PubMed ID: 26892906
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Safety, reliability, and operability of cochlear implant electrode arrays coated with biocompatible polymer.
    Kinoshita M; Kikkawa YS; Sakamoto T; Kondo K; Ishihara K; Konno T; Pawsey N; Yamasoba T
    Acta Otolaryngol; 2015 Apr; 135(4):320-7. PubMed ID: 25719221
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Postoperative Intracochlear Electrocochleography in Pediatric Cochlear Implant Recipients: Association to Audiometric Thresholds and Auditory Performance.
    Attias J; Ulanovski D; Hilly O; Greenstein T; Sokolov M; HabibAllah S; Mormer H; Raveh E
    Ear Hear; 2020; 41(5):1135-1143. PubMed ID: 31977726
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Distinguishing hair cell from neural potentials recorded at the round window.
    Forgues M; Koehn HA; Dunnon AK; Pulver SH; Buchman CA; Adunka OF; Fitzpatrick DC
    J Neurophysiol; 2014 Feb; 111(3):580-93. PubMed ID: 24133227
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2004 Oct; 25(5):447-63. PubMed ID: 15599192
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Correlation of Electrophysiological Properties and Hearing Preservation in Cochlear Implant Patients.
    Dalbert A; Sim JH; Gerig R; Pfiffner F; Roosli C; Huber A
    Otol Neurotol; 2015 Aug; 36(7):1172-80. PubMed ID: 25839980
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cortical auditory evoked potentials in cochlear implant listeners via single electrode stimulation in relation to speech perception.
    Liebscher T; Alberter K; Hoppe U
    Int J Audiol; 2018 Dec; 57(12):933-940. PubMed ID: 30295156
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig.
    Stronks HC; Versnel H; Prijs VF; Klis SF
    Hear Res; 2010 Jan; 259(1-2):64-74. PubMed ID: 19840841
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Postoperative objective detecting techniques for cochlear implant children with inner ear malformation.
    Qiao XF; Li X; Zhang QW; Li TL; Wang D
    Int J Pediatr Otorhinolaryngol; 2017 Nov; 102():1-6. PubMed ID: 29106852
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Behavioral and electrophysiological responses to electrical stimulation in the cat. I. Absolute thresholds.
    Smith DW; Finley CC; van den Honert C; Olszyk VB; Konrad KE
    Hear Res; 1994 Dec; 81(1-2):1-10. PubMed ID: 7737916
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multichannel intracochlear electrodes: mechanism of insertion trauma.
    Kennedy DW
    Laryngoscope; 1987 Jan; 97(1):42-9. PubMed ID: 3796175
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The potential use of low-frequency tones to locate regions of outer hair cell loss.
    Kamerer AM; Diaz FJ; Peppi M; Chertoff ME
    Hear Res; 2016 Dec; 342():39-47. PubMed ID: 27677389
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Intracochlear Pressure Changes due to 2 Electrode Types: An Artificial Model Experiment.
    Mittmann P; Mittmann M; Ernst A; Todt I
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):712-716. PubMed ID: 28025904
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effect of local application of insulin-like growth factor for prevention of inner-ear damage caused by electrode trauma.
    Gur H; Alimoglu Y; Duzenli U; Korkmaz S; Inan S; Olgun L
    J Laryngol Otol; 2017 Mar; 131(3):245-252. PubMed ID: 28124637
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Does cochleostomy location influence electrode trajectory and intracochlear trauma?
    Zhou L; Friedmann DR; Treaba C; Peng R; Roland JT
    Laryngoscope; 2015 Apr; 125(4):966-71. PubMed ID: 25345671
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Intracochlear and extracochlear ECAPs suggest antidromic action potentials.
    Miller CA; Abbas PJ; Hay-McCutcheon MJ; Robinson BK; Nourski KV; Jeng FC
    Hear Res; 2004 Dec; 198(1-2):75-86. PubMed ID: 15567605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.