BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 22253000)

  • 41. Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries.
    Xia G; Li N; Li D; Liu R; Wang C; Li Q; Lü X; Spendelow JS; Zhang J; Wu G
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8607-14. PubMed ID: 23947768
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interconnected 3 D Network of Graphene-Oxide Nanosheets Decorated with Carbon Dots for High-Performance Supercapacitors.
    Zhao X; Li M; Dong H; Liu Y; Hu H; Cai Y; Liang Y; Xiao Y; Zheng M
    ChemSusChem; 2017 Jun; 10(12):2626-2634. PubMed ID: 28440020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and characterization of some graphene based nanocomposite materials.
    Sheshmani S; Amini R
    Carbohydr Polym; 2013 Jun; 95(1):348-59. PubMed ID: 23618279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Freestanding Gold/Graphene-Oxide/Manganese Oxide Microsupercapacitor Displaying High Areal Energy Density.
    Morag A; Becker JY; Jelinek R
    ChemSusChem; 2017 Jul; 10(13):2736-2741. PubMed ID: 28474863
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors.
    Yu G; Hu L; Vosgueritchian M; Wang H; Xie X; McDonough JR; Cui X; Cui Y; Bao Z
    Nano Lett; 2011 Jul; 11(7):2905-11. PubMed ID: 21667923
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films.
    Su PG; Peng SL
    Talanta; 2015 Jan; 132():398-405. PubMed ID: 25476324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ preparation, characterization, magnetic and catalytic studies of surfactant free RGO/Fe(x)Co(100-x) nanocomposites.
    Chen F; Xi P; Ma C; Shao C; Wang J; Wang S; Liu G; Zeng Z
    Dalton Trans; 2013 Jun; 42(22):7936-42. PubMed ID: 23403735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries.
    Jung HG; Jeong YS; Park JB; Sun YK; Scrosati B; Lee YJ
    ACS Nano; 2013 Apr; 7(4):3532-9. PubMed ID: 23540570
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The oxidation capacity of Mn3O4 nanoparticles is significantly enhanced by anchoring them onto reduced graphene oxide to facilitate regeneration of surface-associated Mn(III).
    Duan L; Wang Z; Hou Y; Wang Z; Gao G; Chen W; Alvarez PJJ
    Water Res; 2016 Oct; 103():101-108. PubMed ID: 27448035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells.
    Yin Z; Wu S; Zhou X; Huang X; Zhang Q; Boey F; Zhang H
    Small; 2010 Jan; 6(2):307-12. PubMed ID: 20039255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol.
    Liu Y; Liu L; Shan J; Zhang J
    J Hazard Mater; 2015 Jun; 290():1-8. PubMed ID: 25731146
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage.
    Chen D; Ji G; Ding B; Ma Y; Qu B; Chen W; Lee JY
    Nanoscale; 2013 Sep; 5(17):7890-6. PubMed ID: 23851576
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-assembled oligo(phenylene ethynylene)s/graphene nanocomposite with improved electrochemical performances for dopamine determination.
    Deng J; Liu M; Lin F; Zhang Y; Liu Y; Yao S
    Anal Chim Acta; 2013 Mar; 767():59-65. PubMed ID: 23452787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications.
    Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK
    Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergetic effects of Al3+ doping and graphene modification on the electrochemical performance of V2O5 cathode materials.
    Zhu K; Qiu H; Zhang Y; Zhang D; Chen G; Wei Y
    ChemSusChem; 2015 Mar; 8(6):1017-25. PubMed ID: 25709078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A facile fabrication of copper particle-decorated novel graphene flower composites for enhanced detecting of nitrite.
    Wang H; Wang C; Yang B; Zhai C; Bin D; Zhang K; Yang P; Du Y
    Analyst; 2015 Feb; 140(4):1291-7. PubMed ID: 25568897
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of graphene sheets intercalated with manganese oxide/carbon nanofibers: toward high-capacity energy storage.
    Kwon OS; Kim T; Lee JS; Park SJ; Park HW; Kang M; Lee JE; Jang J; Yoon H
    Small; 2013 Jan; 9(2):248-54. PubMed ID: 23034820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization.
    Hu B; Shang X; Nie P; Zhang B; Yang J; Liu J
    J Colloid Interface Sci; 2022 Apr; 612():392-400. PubMed ID: 34999544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite.
    Yuan CX; Fan YR; Tao-Zhang ; Guo HX; Zhang JX; Wang YL; Shan DL; Lu XQ
    Biosens Bioelectron; 2014 Aug; 58():85-91. PubMed ID: 24632133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.