These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 22253360)
1. Cellular localization and biochemical analysis of mammalian CDC50A, a glycosylated β-subunit for P4 ATPases. Folmer DE; Mok KS; de Wee SW; Duijst S; Hiralall JK; Seppen J; Oude Elferink RP; Paulusma CC J Histochem Cytochem; 2012 Mar; 60(3):205-18. PubMed ID: 22253360 [TBL] [Abstract][Full Text] [Related]
2. Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases. van der Velden LM; Wichers CG; van Breevoort AE; Coleman JA; Molday RS; Berger R; Klomp LW; van de Graaf SF J Biol Chem; 2010 Dec; 285(51):40088-96. PubMed ID: 20947505 [TBL] [Abstract][Full Text] [Related]
3. Critical role of the beta-subunit CDC50A in the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2. Coleman JA; Molday RS J Biol Chem; 2011 May; 286(19):17205-16. PubMed ID: 21454556 [TBL] [Abstract][Full Text] [Related]
4. Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration. Kato U; Inadome H; Yamamoto M; Emoto K; Kobayashi T; Umeda M J Biol Chem; 2013 Feb; 288(7):4922-34. PubMed ID: 23269685 [TBL] [Abstract][Full Text] [Related]
5. CDC50A plays a key role in the uptake of the anticancer drug perifosine in human carcinoma cells. Muñoz-Martínez F; Torres C; Castanys S; Gamarro F Biochem Pharmacol; 2010 Sep; 80(6):793-800. PubMed ID: 20510206 [TBL] [Abstract][Full Text] [Related]
6. Proteomic Analysis and Functional Characterization of P4-ATPase Phospholipid Flippases from Murine Tissues. Wang J; Molday LL; Hii T; Coleman JA; Wen T; Andersen JP; Molday RS Sci Rep; 2018 Jul; 8(1):10795. PubMed ID: 30018401 [TBL] [Abstract][Full Text] [Related]
7. Characterization of P4 ATPase Phospholipid Translocases (Flippases) in Human and Rat Pancreatic Beta Cells: THEIR GENE SILENCING INHIBITS INSULIN SECRETION. Ansari IU; Longacre MJ; Paulusma CC; Stoker SW; Kendrick MA; MacDonald MJ J Biol Chem; 2015 Sep; 290(38):23110-23. PubMed ID: 26240149 [TBL] [Abstract][Full Text] [Related]
8. ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner. Takatsu H; Baba K; Shima T; Umino H; Kato U; Umeda M; Nakayama K; Shin HW J Biol Chem; 2011 Nov; 286(44):38159-38167. PubMed ID: 21914794 [TBL] [Abstract][Full Text] [Related]
10. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Paulusma CC; Folmer DE; Ho-Mok KS; de Waart DR; Hilarius PM; Verhoeven AJ; Oude Elferink RP Hepatology; 2008 Jan; 47(1):268-78. PubMed ID: 17948906 [TBL] [Abstract][Full Text] [Related]
11. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane. Segawa K; Kurata S; Nagata S J Biol Chem; 2018 Feb; 293(6):2172-2182. PubMed ID: 29276178 [TBL] [Abstract][Full Text] [Related]
12. Differential effects of progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1 mutations on canalicular localization of ATP8B1. Folmer DE; van der Mark VA; Ho-Mok KS; Oude Elferink RP; Paulusma CC Hepatology; 2009 Nov; 50(5):1597-605. PubMed ID: 19731236 [TBL] [Abstract][Full Text] [Related]
13. CDC50A is required for aminophospholipid transport and cell fusion in mouse C2C12 myoblasts. Grifell-Junyent M; Baum JF; Välimets S; Herrmann A; Paulusma CC; López-Marqués RL; Günther Pomorski T J Cell Sci; 2022 Mar; 135(5):. PubMed ID: 34664668 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of CDC50A, CDC50B and CDC50C genes in silico. Katoh Y; Katoh M Oncol Rep; 2004 Oct; 12(4):939-43. PubMed ID: 15375526 [TBL] [Abstract][Full Text] [Related]
15. P4-ATPase ATP8A2 acts in synergy with CDC50A to enhance neurite outgrowth. Xu Q; Yang GY; Liu N; Xu P; Chen YL; Zhou Z; Luo ZG; Ding X FEBS Lett; 2012 Jun; 586(13):1803-12. PubMed ID: 22641037 [TBL] [Abstract][Full Text] [Related]
16. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells. Liou AY; Molday LL; Wang J; Andersen JP; Molday RS J Biol Chem; 2019 Apr; 294(17):6809-6821. PubMed ID: 30850395 [TBL] [Abstract][Full Text] [Related]
18. The lipid flippase heterodimer ATP8B1-CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells. van der Mark VA; de Waart DR; Ho-Mok KS; Tabbers MM; Voogt HW; Oude Elferink RP; Knisely AS; Paulusma CC Biochim Biophys Acta; 2014 Dec; 1842(12 Pt A):2378-86. PubMed ID: 25239307 [TBL] [Abstract][Full Text] [Related]
19. C-terminus of the P4-ATPase ATP8A2 functions in protein folding and regulation of phospholipid flippase activity. Chalat M; Moleschi K; Molday RS Mol Biol Cell; 2017 Feb; 28(3):452-462. PubMed ID: 27932490 [TBL] [Abstract][Full Text] [Related]
20. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase. Costa SR; Marek M; Axelsen KB; Theorin L; Pomorski TG; López-Marqués RL Biochem J; 2016 Jun; 473(11):1605-15. PubMed ID: 27048590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]