BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22253529)

  • 21. Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition.
    Lee CL; Hung HK; Wang JJ; Pan TM
    J Agric Food Chem; 2007 Aug; 55(16):6493-502. PubMed ID: 17636932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of carbon concentrations and carbon to nitrogen ratios on sporulation of two biological control fungi as determined by different culture methods.
    Gao L; Liu X
    Mycopathologia; 2010 Jun; 169(6):475-81. PubMed ID: 20155445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of microbial pigment production from Monascus ruber by sodium octanoate addition.
    Martins TÁ; Vendruscolo F
    Acta Sci Pol Technol Aliment; 2020; 19(4):445-456. PubMed ID: 33179484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi.
    Gao L; Sun MH; Liu XZ; Che YS
    Mycol Res; 2007 Jan; 111(Pt 1):87-92. PubMed ID: 17158041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initiation of yeast sporulation of partial carbon, nitrogen, or phosphate deprivation.
    Freese EB; Chu MI; Freese E
    J Bacteriol; 1982 Mar; 149(3):840-51. PubMed ID: 7037742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of Monascus yellow pigments production by activating the cAMP signalling pathway in Monascus purpureus HJ11.
    Liu J; Du Y; Ma H; Pei X; Li M
    Microb Cell Fact; 2020 Dec; 19(1):224. PubMed ID: 33287814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel two-stage cultivation method to optimize carbon concentration and carbon-to-nitrogen ratio for sporulation of biocontrol fungi.
    Gao L; Liu XZ
    Folia Microbiol (Praha); 2009; 54(2):142-6. PubMed ID: 19418252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iTRAQ-Based Quantitative Proteomic Analysis Reveals Changes in Metabolite Biosynthesis in
    Zhang J; Liu Y; Li L; Gao M
    Toxins (Basel); 2018 Oct; 10(11):. PubMed ID: 30380661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology.
    Sayyad SA; Panda BP; Javed S; Ali M
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1054-8. PubMed ID: 17019609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7.
    Yang Y; Li L; Li X; Shao Y; Chen F
    Fungal Biol; 2012 Feb; 116(2):225-33. PubMed ID: 22289768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of Citrinin and Pigment Biosynthesis Mechanisms in
    Liang B; Du XJ; Li P; Sun CC; Wang S
    Front Microbiol; 2018; 9():1374. PubMed ID: 30002650
    [No Abstract]   [Full Text] [Related]  

  • 32. Exploring the distribution of citrinin biosynthesis related genes among Monascus species.
    Chen YP; Tseng CP; Chien IL; Wang WY; Liaw LL; Yuan GF
    J Agric Food Chem; 2008 Dec; 56(24):11767-72. PubMed ID: 19012408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Profiling the Monascus pilosus proteome during nitrogen limitation.
    Lin WY; Chang JY; Hish CH; Pan TM
    J Agric Food Chem; 2008 Jan; 56(2):433-41. PubMed ID: 18095644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures.
    Babitha S; Soccol CR; Pandey A
    J Basic Microbiol; 2007 Apr; 47(2):118-26. PubMed ID: 17440913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture.
    Wang JJ; Lee CL; Pan TM
    J Agric Food Chem; 2004 Nov; 52(23):6977-82. PubMed ID: 15537306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of Monascus pigment productivity via a simultaneous fermentation process and separation system using immobilized-cell fermentation.
    Liu J; Guo T; Luo Y; Chai X; Wu J; Zhao W; Jiao P; Luo F; Lin Q
    Bioresour Technol; 2019 Jan; 272():552-560. PubMed ID: 30396112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of space flight on yield of Monascus purpureus].
    Yin H; Xie SY; Zhang GM; Xie SM
    Space Med Med Eng (Beijing); 2003 Oct; 16(5):374-6. PubMed ID: 14753240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism.
    Liu Q; Cai L; Shao Y; Zhou Y; Li M; Wang X; Chen F
    Fungal Biol; 2016 Mar; 120(3):297-305. PubMed ID: 26895858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture.
    Carels M; Shepherd D
    Can J Microbiol; 1977 Oct; 23(10):1360-72. PubMed ID: 21736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of the principal nutrients on lovastatin production by Monascus pilosus.
    Miyake T; Uchitomi K; Zhang MY; Kono I; Nozaki N; Sammoto H; Inagaki K
    Biosci Biotechnol Biochem; 2006 May; 70(5):1154-9. PubMed ID: 16717416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.