BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22253932)

  • 1. Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction.
    Bao JX; Chang H; Lv YG; Yu JW; Bai YG; Liu H; Cai Y; Wang L; Ma J; Chang YM
    PLoS One; 2012; 7(1):e30387. PubMed ID: 22253932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin.
    Xia M; Zhang C; Boini KM; Thacker AM; Li PL
    Cardiovasc Res; 2011 Feb; 89(2):401-9. PubMed ID: 20823276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNARE-mediated rapid lysosome fusion in membrane raft clustering and dysfunction of bovine coronary arterial endothelium.
    Han WQ; Xia M; Zhang C; Zhang F; Xu M; Li NJ; Li PL
    Am J Physiol Heart Circ Physiol; 2011 Nov; 301(5):H2028-37. PubMed ID: 21926345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells.
    Jin S; Yi F; Zhang F; Poklis JL; Li PL
    Arterioscler Thromb Vasc Biol; 2008 Nov; 28(11):2056-62. PubMed ID: 18772496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.
    Li X; Han WQ; Boini KM; Xia M; Zhang Y; Li PL
    J Mol Med (Berl); 2013 Jan; 91(1):25-36. PubMed ID: 23108456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells.
    Zhang AY; Yi F; Jin S; Xia M; Chen QZ; Gulbins E; Li PL
    Antioxid Redox Signal; 2007 Jul; 9(7):817-28. PubMed ID: 17508908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of membrane NADPH oxidase associated with lysosome-targeted acid sphingomyelinase in coronary endothelial cells.
    Bao JX; Jin S; Zhang F; Wang ZC; Li N; Li PL
    Antioxid Redox Signal; 2010 Mar; 12(6):703-12. PubMed ID: 19761405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries.
    Bao JX; Xia M; Poklis JL; Han WQ; Brimson C; Li PL
    Am J Physiol Heart Circ Physiol; 2010 Mar; 298(3):H992-H1002. PubMed ID: 20061541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells.
    Han WQ; Xia M; Xu M; Boini KM; Ritter JK; Li NJ; Li PL
    J Cell Sci; 2012 Mar; 125(Pt 5):1225-34. PubMed ID: 22349696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling.
    Mollnau H; Wendt M; Szöcs K; Lassègue B; Schulz E; Oelze M; Li H; Bodenschatz M; August M; Kleschyov AL; Tsilimingas N; Walter U; Förstermann U; Meinertz T; Griendling K; Münzel T
    Circ Res; 2002 Mar; 90(4):E58-65. PubMed ID: 11884382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes.
    Wang S; Zhang M; Liang B; Xu J; Xie Z; Liu C; Viollet B; Yan D; Zou MH
    Circ Res; 2010 Apr; 106(6):1117-28. PubMed ID: 20167927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC.
    Patel H; Chen J; Das KC; Kavdia M
    Cardiovasc Diabetol; 2013 Oct; 12():142. PubMed ID: 24093550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress.
    El-Daly M; Pulakazhi Venu VK; Saifeddine M; Mihara K; Kang S; Fedak PWM; Alston LA; Hirota SA; Ding H; Triggle CR; Hollenberg MD
    Vascul Pharmacol; 2018 Oct; 109():56-71. PubMed ID: 29908295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of lysosomal vesicles to the formation of lipid raft redox signaling platforms in endothelial cells.
    Jin S; Yi F; Li PL
    Antioxid Redox Signal; 2007 Sep; 9(9):1417-26. PubMed ID: 17638544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying endothelial dysfunction in diabetes mellitus.
    Hink U; Li H; Mollnau H; Oelze M; Matheis E; Hartmann M; Skatchkov M; Thaiss F; Stahl RA; Warnholtz A; Meinertz T; Griendling K; Harrison DG; Forstermann U; Munzel T
    Circ Res; 2001 Feb; 88(2):E14-22. PubMed ID: 11157681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propofol protects against high glucose-induced endothelial dysfunction in human umbilical vein endothelial cells.
    Zhu M; Chen J; Tan Z; Wang J
    Anesth Analg; 2012 Feb; 114(2):303-9. PubMed ID: 22156331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical role of lipid raft redox signaling platforms in endostatin-induced coronary endothelial dysfunction.
    Jin S; Zhang Y; Yi F; Li PL
    Arterioscler Thromb Vasc Biol; 2008 Mar; 28(3):485-90. PubMed ID: 18162606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injury.
    Yi F; Jin S; Zhang F; Xia M; Bao JX; Hu J; Poklis JL; Li PL
    J Cell Mol Med; 2009 Sep; 13(9B):3303-14. PubMed ID: 20196779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation by statins of membrane raft-redox signaling in coronary arterial endothelium.
    Wei YM; Li X; Xiong J; Abais JM; Xia M; Boini KM; Zhang Y; Li PL
    J Pharmacol Exp Ther; 2013 May; 345(2):170-9. PubMed ID: 23435541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+/H+ exchanger is required for hyperglycaemia-induced endothelial dysfunction via calcium-dependent calpain.
    Wang S; Peng Q; Zhang J; Liu L
    Cardiovasc Res; 2008 Nov; 80(2):255-62. PubMed ID: 18591204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.