These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22254326)

  • 1. Rotary blood pump control using integrated inlet pressure sensor.
    Cysyk J; Jhun CS; Newswanger R; Weiss W; Rosenberg G
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():373-6. PubMed ID: 22254326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
    Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I
    Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiologic control algorithms for rotary blood pumps using pressure sensor input.
    Bullister E; Reich S; Sluetz J
    Artif Organs; 2002 Nov; 26(11):931-8. PubMed ID: 12406146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cannula Tip With Integrated Volume Sensor for Rotary Blood Pump Control: Early-Stage Development.
    Cysyk J; Newswanger R; Popjes E; Pae W; Jhun CS; Izer J; Weiss W; Rosenberg G
    ASAIO J; 2019; 65(4):318-323. PubMed ID: 29757760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure.
    Soucy KG; Giridharan GA; Choi Y; Sobieski MA; Monreal G; Cheng A; Schumer E; Slaughter MS; Koenig SC
    J Heart Lung Transplant; 2015 Jan; 34(1):122-131. PubMed ID: 25447573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pulsatile control algorithm of continuous-flow pump for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation.
    Wu EL; Stevens MC; Nestler F; Pauls JP; Bradley AP; Tansley G; Fraser JF; Gregory SD
    Artif Organs; 2020 Mar; 44(3):E40-E53. PubMed ID: 31520408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Evaluation of a Physiologic Control System for Rotary Blood Pumps Based on the Left Ventricular Pressure-Volume Loop.
    Cysyk J; Jhun CS; Newswanger R; Pae W; Izer J; Flory H; Reibson J; Weiss W; Rosenberg G
    ASAIO J; 2022 Jun; 68(6):791-799. PubMed ID: 34860709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current axial-flow devices--the HeartMate II and Jarvik 2000 left ventricular assist devices.
    John R
    Semin Thorac Cardiovasc Surg; 2008; 20(3):264-72. PubMed ID: 19038737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haemodynamic evaluation of the new pulsatile-flow generation method in vitro.
    Itkin GP; Bychnev AS; Kuleshov AP; Drobyshev AA
    Int J Artif Organs; 2020 Mar; 43(3):157-164. PubMed ID: 31603372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility.
    Ng BC; Kleinheyer M; Smith PA; Timms D; Cohn WE; Lim E
    PLoS One; 2018; 13(4):e0195975. PubMed ID: 29677212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective ventricular unloading by left ventricular assist device varies with stage of heart failure: cardiac simulator study.
    Jhun CS; Reibson JD; Cysyk JP
    ASAIO J; 2011; 57(5):407-13. PubMed ID: 21817896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Flow Sensor-Based Suction-Index Control Strategy for Rotary Left Ventricular Assist Devices.
    Liang L; Qin K; El-Baz AS; Roussel TJ; Sethu P; Giridharan GA; Wang Y
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sliding mode-based starling-like controller for implantable rotary blood pumps.
    Bakouri MA; Salamonsen RF; Savkin AV; AlOmari AH; Lim E; Lovell NH
    Artif Organs; 2014 Jul; 38(7):587-93. PubMed ID: 24274084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preload sensitivity of the Jarvik 2000 and HeartMate II left ventricular assist devices.
    Khalil HA; Cohn WE; Metcalfe RW; Frazier OH
    ASAIO J; 2008; 54(3):245-8. PubMed ID: 18496273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.