These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22254330)

  • 1. Uncertainty analysis in the simulation of X-ray spectra in the diagnostic range using the MCNP5 code.
    Gallardo S; Querol A; Ródenas J; Verdú G
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():389-92. PubMed ID: 22254330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C.
    Ay MR; Shahriari M; Sarkar S; Adib M; Zaidi H
    Phys Med Biol; 2004 Nov; 49(21):4897-917. PubMed ID: 15584526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte carlo simulation of the compton scattering technique applied to characterize diagnostic x-ray spectra.
    Gallardo S; Ródenas J; Verdú G
    Med Phys; 2004 Jul; 31(7):2082-90. PubMed ID: 15305461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of different computational models for generation of x-ray spectra in diagnostic radiology and mammography.
    Ay MR; Sarkar S; Shahriari M; Sardari D; Zaidi H
    Med Phys; 2005 Jun; 32(6):1660-75. PubMed ID: 16013725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements.
    Kim J; Hill R; Claridge Mackonis E; Kuncic Z
    Phys Med Biol; 2010 Feb; 55(3):783-97. PubMed ID: 20071763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities.
    Kharrati H; Agrebi A; Karaoui MK
    Med Phys; 2007 Apr; 34(4):1398-404. PubMed ID: 17500471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DXRaySMCS: a user-friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation.
    Bahreyni Toossi MT; Moradi H; Zare H
    Radiat Prot Dosimetry; 2008; 132(4):415-9. PubMed ID: 19122212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of shielding materials in a Compton spectrometer applied to x-ray tube quality control using Monte Carlo simulation.
    Gallardo S; Ródenas J; Verdú G; Villaescusa JI
    Radiat Prot Dosimetry; 2005; 115(1-4):375-9. PubMed ID: 16381749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of thermal neutron distributions within shield materials obtained by experiments, SN and Monte Carlo code calculations.
    Asano Y; Sugita T; Suzaki T; Hirose H
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):284-9. PubMed ID: 16604645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of transmission data of diagnostic X rays through concrete using Monte Carlo simulation.
    Noto K; Koshida K; Iida H; Fukuda A
    Radiat Prot Dosimetry; 2009 Feb; 133(3):144-52. PubMed ID: 19307234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Tikhonov and MTSVD methods to unfold experimental X-ray spectra in the radiodiagnostic energy range.
    Querol A; Gallardo S; Rodenas J; Verdu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():536-9. PubMed ID: 21095662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the formalism used to determine the absorbed dose for low-energy x-ray beams.
    Chica U; Anguiano M; Lallena AM
    Phys Med Biol; 2008 Dec; 53(23):6963-77. PubMed ID: 19001702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of mammographic x-ray spectra: simulation with EGSnrc and experiment with CdTe detector.
    Nigapruke K; Puwanich P; Phaisangittisakul N; Youngdee W
    J Radiat Res; 2009 Nov; 50(6):507-12. PubMed ID: 19696472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray spectra and quality parameters from Monte Carlo simulation and analytical filters.
    Salehi Z; Ya Ali NK; Yusoff AL
    Appl Radiat Isot; 2012 Nov; 70(11):2586-9. PubMed ID: 22940409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric study of the X-ray primary spectra obtained with the MTSVD unfolding method.
    Querol A; Gallardo S; Ródenas J; Verdú G
    Appl Radiat Isot; 2011 Aug; 69(8):1112-7. PubMed ID: 21078558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic x-ray dosimetry using Monte Carlo simulation.
    Ioppolo JL; Price RI; Tuchyna T; Buckley CE
    Phys Med Biol; 2002 May; 47(10):1707-20. PubMed ID: 12069088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach to diagnostic radiology dosimetry.
    McLean D
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):615-8. PubMed ID: 25524486
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of deterministic and Monte Carlo methods in shielding design.
    Oliveira AD; Oliveira C
    Radiat Prot Dosimetry; 2005; 115(1-4):254-7. PubMed ID: 16381723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A track length estimator method for dose calculations in low-energy X-ray irradiations: implementation, properties and performance.
    Baldacci F; Mittone A; Bravin A; Coan P; Delaire F; Ferrero C; Gasilov S; Létang JM; Sarrut D; Smekens F; Freud N
    Z Med Phys; 2015 Mar; 25(1):36-47. PubMed ID: 24973309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectra, fluence and absorbed doses in sensitive organs due to scattered X-rays during a chest CT.
    Vazquez-Bañuelos J; Campillo-Rivera GE; Vega-Carrillo HR; Torres-Cortes CO; Marquez-Mata CA; Vasquez-Arteaga M
    Appl Radiat Isot; 2023 Apr; 194():110723. PubMed ID: 36804700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.