BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22254346)

  • 1. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms.
    Alaqtash M; Sarkodie-Gyan T; Yu H; Fuentes O; Brower R; Abdelgawad A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():453-7. PubMed ID: 22254346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait.
    Kamruzzaman J; Begg RK
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of patellofemoral pain syndrome using a Support Vector Machine approach.
    Lai DT; Levinger P; Begg RK; Gilleard W; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3144-7. PubMed ID: 18002662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic classification of asymptomatic and osteoarthritis knee gait patterns using kinematic data features and the nearest neighbor classifier.
    Mezghani N; Husse S; Boivin K; Turcot K; Aissaoui R; Hagemeister N; de Guise JA
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1230-2. PubMed ID: 18334419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harmonic analysis of force platform data in normal and cerebral palsy gait.
    White R; Agouris I; Fletcher E
    Clin Biomech (Bristol, Avon); 2005 Jun; 20(5):508-16. PubMed ID: 15836938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal component analysis of vertical ground reaction force: a powerful method to discriminate normal and abnormal gait and assess treatment.
    Muniz AM; Manfio EF; Andrade MC; Nadal J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2683-6. PubMed ID: 17946131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic recognition of gait patterns exhibiting patellofemoral pain syndrome using a support vector machine approach.
    Lai DT; Levinger P; Begg RK; Gilleard WL; Palaniswami M
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):810-7. PubMed ID: 19447723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy.
    Lauer RT; Smith BT; Betz RR
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1532-40. PubMed ID: 16189966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMM-Fuzzy model for recognition of gait changes due to trip-related falls.
    Hassan R; Begg R; Taylor S; Kumar DK
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1216-9. PubMed ID: 17945628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel sensorized shoe system to classify gait severity in children with cerebral palsy.
    Mancinelli C; Patel S; Deming LC; Nimec D; Chu JJ; Beckwith J; Greenwald R; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5010-3. PubMed ID: 23367053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of amyotrophic lateral sclerosis disease using factorial hidden Markov model.
    Khorasani A; Daliri MR; Pooyan M
    Biomed Tech (Berl); 2016 Feb; 61(1):119-26. PubMed ID: 26110481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.
    Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R
    J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Gait Modeling and Analysis Using a Semi-Markov Process With Ground Reaction Forces.
    Ma H; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):597-607. PubMed ID: 27352393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent arrhythmia detection and classification using ICA.
    Azemi A; Sabzevari VR; Khademi M; Gholizade H; Kiani A; Dastgheib ZS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2163-6. PubMed ID: 17946942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait.
    Muniz AM; Liu H; Lyons KE; Pahwa R; Liu W; Nobre FF; Nadal J
    J Biomech; 2010 Mar; 43(4):720-6. PubMed ID: 19914622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural networks for detection and classification of walking pattern changes due to ageing.
    Begg R; Kamruzzaman J
    Australas Phys Eng Sci Med; 2006 Jun; 29(2):188-95. PubMed ID: 16845924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subject recognition based on ground reaction force measurements of gait signals.
    Moustakidis SP; Theocharis JB; Giakas G
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1476-85. PubMed ID: 19022720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated event detection algorithms in pathological gait.
    Bruening DA; Ridge ST
    Gait Posture; 2014; 39(1):472-7. PubMed ID: 24041468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Index of mechanical work in gait of children with cerebral palsy.
    Dziuba AK; Tylkowska M; Jaroszczuk S
    Acta Bioeng Biomech; 2014; 16(3):77-87. PubMed ID: 25308510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of wavelet analysis of gait in children with typical development and cerebral palsy.
    Lauer RT; Stackhouse C; Shewokis PA; Smith BT; Orlin M; McCarthy JJ
    J Biomech; 2005 Jun; 38(6):1351-7. PubMed ID: 15863120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.