These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22254379)

  • 1. Design of a fully-passive transfemoral prosthesis prototype.
    Behrens SM; Unal R; Hekman EE; Carloni R; Stramigioli S; Koopman HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():591-4. PubMed ID: 22254379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conceptual Design of a Fully Passive Transfemoral Prosthesis to Facilitate Energy-Efficient Gait.
    Unal R; Behrens S; Carloni R; Hekman E; Stramigioli S; Koopman B
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2360-2366. PubMed ID: 30418913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical conceptual design of a passive transfemoral prosthesis.
    Unal R; Carloni R; Hekman EG; Stramigioli S; Koopman HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():515-8. PubMed ID: 21095657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control and Evaluation of a Powered Transfemoral Prosthesis for Stair Ascent.
    Ledoux ED; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):917-924. PubMed ID: 28113346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms.
    Jasni F; Hamzaid NA; Mohd Syah NE; Chung TY; Abu Osman NA
    Front Neurosci; 2017; 11():230. PubMed ID: 28487630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual prototyping of a semi-active transfemoral prosthetic leg.
    Lui ZW; Awad MI; Abouhossein A; Dehghani-Sanij AA; Messenger N
    Proc Inst Mech Eng H; 2015 May; 229(5):350-61. PubMed ID: 25991714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics.
    Narang YS; Arelekatti VN; Winter AG
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):754-63. PubMed ID: 26186794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Control of a New Biomimetic Transfemoral Knee Prosthesis Using an Echo-Control Scheme.
    Bernal-Torres MG; Medellín-Castillo HI; Arellano-González JC
    J Healthc Eng; 2018; 2018():8783642. PubMed ID: 29854368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study.
    Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650352. PubMed ID: 24187171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental effective shape control of a powered transfemoral prosthesis.
    Gregg RD; Lenzi T; Fey NP; Hargrove LJ; Sensinger JW
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650413. PubMed ID: 24187232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM; Scally AJ; Buckley JG
    Clin Biomech (Bristol, Avon); 2018 Aug; 57():35-41. PubMed ID: 29908391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS; Kirsch RF; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal-spatial parameters of gait in transfemoral amputees: Comparison of bionic and mechanically passive knee joints.
    Uchytil J; Jandacka D; Zahradnik D; Farana R; Janura M
    Prosthet Orthot Int; 2014 Jun; 38(3):199-203. PubMed ID: 23824546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designs and performance of microprocessor-controlled knee joints.
    Thiele J; Westebbe B; Bellmann M; Kraft M
    Biomed Tech (Berl); 2014 Feb; 59(1):65-77. PubMed ID: 24176961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of WalkMECH: a fully-passive energy-efficient transfemoral prosthesis prototype.
    Unal R; Klijnstra F; Burkink B; Behrens SM; Hekman EE; Stramigioli S; Koopman HF; Carloni R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650406. PubMed ID: 24187225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of the Inertial Properties of Above-Knee Prostheses on Optimal Stiffness, Damping, and Engagement Parameters of Passive Prosthetic Knees.
    Narang YS; Murthy Arelekatti VN; Winter AG
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27429248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient robotic tendon for gait assistance.
    Hollander KW; Ilg R; Sugar TG; Herring D
    J Biomech Eng; 2006 Oct; 128(5):788-91. PubMed ID: 16995768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.