These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 22254383)
1. Restoration of stance phase knee flexion during walking after spinal cord injury using a variable impedance orthosis. Bulea TC; Kobetic R; Triolo RJ Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():608-11. PubMed ID: 22254383 [TBL] [Abstract][Full Text] [Related]
3. Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis. Bulea TC; Kobetic R; Audu ML; Schnellenberger JR; Triolo RJ IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):141-51. PubMed ID: 23193320 [TBL] [Abstract][Full Text] [Related]
4. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking. To CS; Kirsch RF; Kobetic R; Triolo RJ IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904 [TBL] [Abstract][Full Text] [Related]
5. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients. Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202 [TBL] [Abstract][Full Text] [Related]
6. The effect of an isocentric reciprocating gait orthosis incorporating an active knee mechanism on the gait of a spinal cord injury patient: a single case study. Arazpour M; Bani MA; Chitsazan A; Ghomshe FT; Kashani RV; Hutchins SW Disabil Rehabil Assist Technol; 2013 May; 8(3):261-6. PubMed ID: 22612773 [TBL] [Abstract][Full Text] [Related]
7. Forward stair descent with hybrid neuroprosthesis after paralysis: Single case study demonstrating feasibility. Bulea TC; Kobetic R; Audu ML; Schnellenberger JR; Pinault G; Triolo RJ J Rehabil Res Dev; 2014; 51(7):1077-94. PubMed ID: 25437932 [TBL] [Abstract][Full Text] [Related]
8. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia. To CS; Kobetic R; Bulea TC; Audu ML; Schnellenberger JR; Pinault G; Triolo RJ J Rehabil Res Dev; 2014; 51(2):229-44. PubMed ID: 24933721 [TBL] [Abstract][Full Text] [Related]
9. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis. Yakimovich T; Lemaire ED; Kofman J Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186 [TBL] [Abstract][Full Text] [Related]
10. Design and evaluation of a stance-control knee-ankle-foot orthosis knee joint. Yakimovich T; Kofman J; Lemaire ED IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):361-9. PubMed ID: 17009496 [TBL] [Abstract][Full Text] [Related]
11. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Chang SR; Nandor MJ; Li L; Kobetic R; Foglyano KM; Schnellenberger JR; Audu ML; Pinault G; Quinn RD; Triolo RJ J Neuroeng Rehabil; 2017 May; 14(1):48. PubMed ID: 28558835 [TBL] [Abstract][Full Text] [Related]
12. Stance control knee mechanism for lower-limb support in hybrid neuroprosthesis. To CS; Kobetic R; Bulea TC; Audu ML; Schnellenberger JR; Pinault G; Triolo RJ J Rehabil Res Dev; 2011; 48(7):839-50. PubMed ID: 21938668 [TBL] [Abstract][Full Text] [Related]
13. Preliminary evaluation of a controlled-brake orthosis for FES-aided gait. Goldfarb M; Korkowski K; Harrold B; Durfee W IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):241-8. PubMed ID: 14518787 [TBL] [Abstract][Full Text] [Related]
14. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology. Kim Y; Schmit BD; Youm Y Clin Biomech (Bristol); 2006 Jun; 21(5):485-94. PubMed ID: 16488061 [TBL] [Abstract][Full Text] [Related]
15. Comparison of gait between healthy participants and persons with spinal cord injury when using the advanced reciprocating gait orthosis. Arazpour M; Joghtaei M; Bahramizadeh M; Ahmadi Bani M; Hutchins SW; Curran S; Mousavi ME; Sharifi G; Mardani MA Prosthet Orthot Int; 2016 Apr; 40(2):287-93. PubMed ID: 26195620 [TBL] [Abstract][Full Text] [Related]
16. Estimating the Mechanical Behavior of the Knee Joint During Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses. Lerner ZF; Damiano DL; Bulea TC IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):621-9. PubMed ID: 27101612 [TBL] [Abstract][Full Text] [Related]
17. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. Kobetic R; To CS; Schnellenberger JR; Audu ML; Bulea TC; Gaudio R; Pinault G; Tashman S; Triolo RJ J Rehabil Res Dev; 2009; 46(3):447-62. PubMed ID: 19675995 [TBL] [Abstract][Full Text] [Related]
18. BiosStep-assisted walking in spinal cord-injured patients: an evaluation report. Tabernig CB; Cherniz AS; Escobar SO Int J Rehabil Res; 2007 Sep; 30(3):249-53. PubMed ID: 17762773 [TBL] [Abstract][Full Text] [Related]
19. Examination of knee joint moments on the function of knee-ankle-foot orthoses during walking. Andrysek J; Klejman S; Kooy J J Appl Biomech; 2013 Aug; 29(4):474-80. PubMed ID: 23182738 [TBL] [Abstract][Full Text] [Related]
20. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. Blaya JA; Herr H IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):24-31. PubMed ID: 15068184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]