These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22254482)

  • 1. Robust online adaptive neural network control for the regulation of treadmill exercises.
    Nguyen TN; Nguyen H; Su S; Celler B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1005-8. PubMed ID: 22254482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced portable remote monitoring system for the regulation of treadmill running exercises.
    Nguyen TN; Su S; Celler B; Nguyen H
    Artif Intell Med; 2014 Jun; 61(2):119-26. PubMed ID: 24877618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear modeling and control of human heart rate response during exercise with various work load intensities.
    Cheng TM; Savkin AV; Celler BG; Su SW; Wang L
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2499-508. PubMed ID: 18990619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonparametric Hammerstein model based model predictive control for heart rate regulation.
    Su SW; Huang S; Wang L; Celler BG; Savkin AV; Guo Y; Cheng T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2984-7. PubMed ID: 18002622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and control for heart rate regulation during treadmill exercise.
    Su SW; Wang L; Celler BG; Savkin AV; Guo Y
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1238-46. PubMed ID: 17605355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast tracking of a given heart rate profile in treadmill exercise.
    Weng K; Turk B; Dolores L; Nguyen TN; Celler B; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2569-72. PubMed ID: 21096172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a heart rate controller for treadmill exercise using a recurrent fuzzy neural network.
    Lu CH; Wang WC; Tai CC; Chen TC
    Comput Methods Programs Biomed; 2016 May; 128():27-39. PubMed ID: 27040829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling and control for heart rate regulation during treadmill exercise.
    Su SW; Wang L; Celler BG; Savkin AV; Guo Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4299-302. PubMed ID: 17946236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing heart rate regulation for safe exercise.
    Su SW; Huang S; Wang L; Celler BG; Savkin AV; Guo Y; Cheng TM
    Ann Biomed Eng; 2010 Mar; 38(3):758-68. PubMed ID: 19953322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating oxygen uptake and energy expenditure during treadmill walking by neural network analysis of easy-to-obtain inputs.
    Beltrame T; Amelard R; Villar R; Shafiee MJ; Wong A; Hughson RL
    J Appl Physiol (1985); 2016 Nov; 121(5):1226-1233. PubMed ID: 27687561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear control techniques for the heart rate regulation in treadmill exercises.
    Scalzi S; Tomei P; Verrelli CM
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):599-603. PubMed ID: 22167561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nonlinear dynamic model for heart rate response to treadmill walking exercise.
    Cheng TM; Savkin AV; Celler BG; Wang L; Su SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2988-91. PubMed ID: 18002623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.
    Krüger T; Schnetter P; Placzek R; Vörsmann P
    Neural Netw; 2012 Aug; 32():267-74. PubMed ID: 22386784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelet adaptive backstepping control for a class of nonlinear systems.
    Hsu CF; Lin CM; Lee TT
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1175-83. PubMed ID: 17001979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear modelling and control for heart rate response to exercise.
    Zhang Y; Chen W; Su SW; Celler B
    Int J Bioinform Res Appl; 2012; 8(5-6):397-416. PubMed ID: 23060418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adaptive recurrent-neural-network motion controller for X-Y table in CNC machine.
    Lin FJ; Shieh HJ; Shieh PH; Shen PH
    IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):286-99. PubMed ID: 16602590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with application to spark engine EGR operation.
    Shih P; Kaul BC; Jagannathan S; Drallmeier JA
    IEEE Trans Neural Netw; 2008 Aug; 19(8):1369-88. PubMed ID: 18701368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.
    Jagannathan S; He P
    IEEE Trans Neural Netw; 2008 Dec; 19(12):2073-87. PubMed ID: 19054732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
    Temko A
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2016-2024. PubMed ID: 28278454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online adaptive policy learning algorithm for H∞ state feedback control of unknown affine nonlinear discrete-time systems.
    Zhang H; Qin C; Jiang B; Luo Y
    IEEE Trans Cybern; 2014 Dec; 44(12):2706-18. PubMed ID: 25095274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.