These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 22254512)
21. The validity of two Omron pedometers during treadmill walking is speed dependent. Giannakidou DM; Kambas A; Ageloussis N; Fatouros I; Christoforidis C; Venetsanou F; Douroudos I; Taxildaris K Eur J Appl Physiol; 2012 Jan; 112(1):49-57. PubMed ID: 21479653 [TBL] [Abstract][Full Text] [Related]
22. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models. Yang S; Laudanski A; Li Q Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894 [TBL] [Abstract][Full Text] [Related]
23. Gated Sensor Fusion: A way to Improve the Precision of Ambulatory Human Body Motion Estimation. Olivares A; Górriz JM; Ramírez J; Olivares G Stud Health Technol Inform; 2014; 207():37-46. PubMed ID: 25488209 [TBL] [Abstract][Full Text] [Related]
24. Ambulatory estimation of foot placement during walking using inertial sensors. Martin Schepers H; van Asseldonk EH; Baten CT; Veltink PH J Biomech; 2010 Dec; 43(16):3138-43. PubMed ID: 20723901 [TBL] [Abstract][Full Text] [Related]
25. Dynamic activity classification based on automatic adaptation of postural orientation. Song SK; Jang J; Park SJ Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6175-8. PubMed ID: 19964894 [TBL] [Abstract][Full Text] [Related]
26. Walking pattern classification and walking distance estimation algorithms using gait phase information. Wang JS; Lin CW; Yang YT; Ho YJ IEEE Trans Biomed Eng; 2012 Oct; 59(10):2884-92. PubMed ID: 22893370 [TBL] [Abstract][Full Text] [Related]
27. Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk. Trojaniello D; Cereatti A; Della Croce U Gait Posture; 2014 Sep; 40(4):487-92. PubMed ID: 25085660 [TBL] [Abstract][Full Text] [Related]
28. Fetching Connected Pedometer Data to Analyze Patients Walking. Souvignet J; Le Hello C; Trombert-Paviot B; Brouard B; Chieh A; Boissier C Stud Health Technol Inform; 2016; 221():130. PubMed ID: 27071904 [No Abstract] [Full Text] [Related]
29. Gait cycle spectrogram analysis using a torso-attached inertial sensor. Yuwono M; Su SW; Moulton BD; Nguyen HT Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6539-42. PubMed ID: 23367427 [TBL] [Abstract][Full Text] [Related]
30. A wireless trigger for synchronization of wearable sensors to external systems during recording of human gait. Kugler P; Schlarb H; Blinn J; Picard A; Eskofier B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4537-40. PubMed ID: 23366937 [TBL] [Abstract][Full Text] [Related]
31. An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data. McCamley J; Donati M; Grimpampi E; Mazzà C Gait Posture; 2012 Jun; 36(2):316-8. PubMed ID: 22465705 [TBL] [Abstract][Full Text] [Related]
32. Foot worn inertial sensors for gait assessment and rehabilitation based on motorized shoes. Aminian K; Mariani B; Paraschiv-Ionescu A; Hoskovec C; Bula C; Penders J; Tacconi C; Marcellini F Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5820-3. PubMed ID: 22255663 [TBL] [Abstract][Full Text] [Related]
33. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Vähä-Ypyä H; Vasankari T; Husu P; Suni J; Sievänen H Clin Physiol Funct Imaging; 2015 Jan; 35(1):64-70. PubMed ID: 24393233 [TBL] [Abstract][Full Text] [Related]
34. Positioning Commercial Pedometers to Measure Activity of Older Adults with Slow Gait: At the Wrist or at the Waist? Ehrler F; Weber C; Lovis C Stud Health Technol Inform; 2016; 221():18-22. PubMed ID: 27071868 [TBL] [Abstract][Full Text] [Related]
35. Development of an in-shoe pressure-sensitive device for gait analysis. De Rossi SM; Lenzi T; Vitiello N; Donati M; Persichetti A; Giovacchini F; Vecchi F; Carrozza MC Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5637-40. PubMed ID: 22255618 [TBL] [Abstract][Full Text] [Related]
36. [Reliability of the novel gait analysis system RehaWatch]. Schwesig R; Kauert R; Wust S; Becker S; Leuchte S Biomed Tech (Berl); 2010 Apr; 55(2):109-15. PubMed ID: 20367327 [TBL] [Abstract][Full Text] [Related]
37. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance. Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287 [TBL] [Abstract][Full Text] [Related]
38. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations. Pärkkä J; Ermes M; Antila K; van Gils M; Mänttäri A; Nieminen H Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1511-4. PubMed ID: 18002254 [TBL] [Abstract][Full Text] [Related]
39. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors. Yeoh WS; Pek I; Yong YH; Chen X; Waluyo AB Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5184-7. PubMed ID: 19163885 [TBL] [Abstract][Full Text] [Related]
40. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system. Liu K; Liu T; Shibata K; Inoue Y; Zheng R J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]