These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22254545)

  • 1. Trajectory planning of a robot for lower limb rehabilitation.
    Pei Y; Kim Y; Obinata G; Hase K; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1259-63. PubMed ID: 22254545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Customized interactive robotic treatment for stroke: EMG-triggered therapy.
    Dipietro L; Ferraro M; Palazzolo JJ; Krebs HI; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):325-34. PubMed ID: 16200756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
    Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients.
    Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-aided rehabilitation task design for inner shoulder muscles.
    Pei Y; Kim Y; Obinata G; Genda E; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3922-5. PubMed ID: 23366785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy control of a hand rehabilitation robot to optimize the exercise speed in passive working mode.
    Baniasad MA; Akbar M; Alasty A; Farahmand F
    Stud Health Technol Inform; 2011; 163():39-43. PubMed ID: 21335755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of motor rehabilitation through the use of information technologies.
    Liebermann DG; Buchman AS; Franks IM
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):8-20. PubMed ID: 16198463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental results using force-feedback cueing in robot-assisted stroke therapy.
    Johnson MJ; Van der Loos HF; Burgar CG; Shor P; Leifer LJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):335-48. PubMed ID: 16200757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supervisory controller design for a robot-assisted reach-to-grasp rehabilitation task.
    Wang F; Sarkar N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4258-61. PubMed ID: 19163653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hiding robot inertia using resonance.
    Vallery H; Duschau-Wicke A; Riener R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1271-4. PubMed ID: 21095916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training.
    Hu XL; Tong KY; Song R; Zheng XJ; Lui KH; Leung WW; Ng S; Au-Yeung SS
    J Electromyogr Kinesiol; 2009 Aug; 19(4):639-50. PubMed ID: 18490177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual reality aided training of combined arm and leg movements of children with CP.
    Riener R; Dislaki E; Keller U; Koenig A; Van Hedel H; Nagle A
    Stud Health Technol Inform; 2013; 184():349-55. PubMed ID: 23400183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots.
    Guo B; Li Z; Huang M; Li X; Han J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-aided motion planning for knee joint rehabilitation with two robot-manipulators.
    Pei Y; Kim Y; Obinata G; Genda E; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2495-8. PubMed ID: 24110233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.