These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22254553)

  • 1. Accuracy and repeatability of parameter estimation methods from ambulatory data for the wrist joint.
    Esmaeili M; Moussouni S; Widjaja F; Gamage K; Campolo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1292-6. PubMed ID: 22254553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of an electrogoniometric wrist alignment device.
    Ugbolue UC; Nicol AC; Maclean J
    Proc Inst Mech Eng H; 2008 Jul; 222(5):637-46. PubMed ID: 18756683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy and reliability of three different techniques for manual goniometry for wrist motion: a cadaveric study.
    Carter TI; Pansy B; Wolff AL; Hillstrom HJ; Backus SI; Lenhoff M; Wolfe SW
    J Hand Surg Am; 2009 Oct; 34(8):1422-8. PubMed ID: 19703734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Wrist Position on the Metacarpophalangeal Joint Motion of the Index Through Small Finger.
    Latz D; Koukos C; Boeckers P; Jungbluth P; Schiffner E; Kaufmann R; Gehrmann SV
    Hand (N Y); 2019 Mar; 14(2):259-263. PubMed ID: 29072491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical operation of a biaxial goniometer at the wrist joint.
    Buchholz B; Wellman H
    Hum Factors; 1997 Mar; 39(1):119-29. PubMed ID: 9302884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in-vivo method of wrist joint motion analysis.
    Leonard L; Sirkett D; Mullineux G; Giddins GE; Miles AW
    Clin Biomech (Bristol); 2005 Feb; 20(2):166-71. PubMed ID: 15621321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Estimation of Human Forearm and Wrist Dynamic Properties.
    Park K; Chang PH; Kang SH
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):436-446. PubMed ID: 27249835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of an electrogoniometer relative to optical motion tracking for quantifying wrist range of motion.
    McHugh BP; Morton AM; Akhbari B; Molino J; Crisco JJ
    J Med Eng Technol; 2020 Feb; 44(2):49-54. PubMed ID: 31997679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphone photography utilized to measure wrist range of motion.
    Wagner ER; Conti Mica M; Shin AY
    J Hand Surg Eur Vol; 2018 Feb; 43(2):187-192. PubMed ID: 28872411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical measurement of the dart throwing motion of the wrist: variability, accuracy and correction.
    Vardakastani V; Bell H; Mee S; Brigstocke G; Kedgley AE
    J Hand Surg Eur Vol; 2018 Sep; 43(7):723-731. PubMed ID: 29754522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vivo three-dimensional carpal bone kinematics during flexion-extension and radio-ulnar deviation of the wrist: Dynamic motion versus step-wise static wrist positions.
    Foumani M; Strackee SD; Jonges R; Blankevoort L; Zwinderman AH; Carelsen B; Streekstra GJ
    J Biomech; 2009 Dec; 42(16):2664-71. PubMed ID: 19748626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a computed tomography-based methodology to measure carpal kinematics.
    Pfaeffle J; Blankenhorn B; Stabile K; Imbriglia J; Goitz R; Robertson D
    J Biomech Eng; 2005 Jun; 127(3):541-8. PubMed ID: 16060362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A geometric framework for the estimation of joint stiffness of the human wrist.
    Formica D; Azhar M; Tommasino P; Campolo D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():151-156. PubMed ID: 31374622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wrist circumduction reduced by finger constraints.
    Gehrmann SV; Kaufmann RA; Li ZM
    J Hand Surg Am; 2008 Oct; 33(8):1287-92. PubMed ID: 18929190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimal detectable difference of the finger and wrist range of motion: comparison of goniometry and 3D motion analysis.
    Reissner L; Fischer G; List R; Taylor WR; Giovanoli P; Calcagni M
    J Orthop Surg Res; 2019 Jun; 14(1):173. PubMed ID: 31182129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivation of centers and axes of rotation for wrist and fingers in a hand kinematic model: methods and reliability results.
    Cerveri P; Lopomo N; Pedotti A; Ferrigno G
    Ann Biomed Eng; 2005 Mar; 33(3):402-12. PubMed ID: 15868731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape.
    Kawaguchi J; Yoshimoto S; Kuroda Y; Oshiro O
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1409-1418. PubMed ID: 27845665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergy matrices to extract fluid wrist motion intents via surface electromyography.
    Choi C; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3511-4. PubMed ID: 21097033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.