BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22254562)

  • 1. Improvement of hemocompatibility for hydrodynamic levitation centrifugal pump by optimizing step bearings.
    Kosaka R; Yada T; Nishida M; Maruyama O; Yamane T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1331-4. PubMed ID: 22254562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.
    Kosaka R; Nishida M; Maruyama O; Yambe T; Imachi K; Yamane T
    Biomed Mater Eng; 2013; 23(1-2):37-47. PubMed ID: 23442235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.
    Kosaka R; Yada T; Nishida M; Maruyama O; Yamane T
    Artif Organs; 2013 Sep; 37(9):778-85. PubMed ID: 23834855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.
    Kosaka R; Maruyama O; Nishida M; Yada T; Saito S; Hirai S; Yamane T
    Artif Organs; 2009 Oct; 33(10):798-804. PubMed ID: 19681836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size.
    Kosaka R; Sakota D; Nishida M; Maruyama O; Yamane T
    J Artif Organs; 2021 Jun; 24(2):157-163. PubMed ID: 33428006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.
    Kosaka R; Yoshida F; Nishida M; Maruyama O; Kawaguchi Y; Yamane T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3295-8. PubMed ID: 26736996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid dynamic design for low hemolysis in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Nishida M; Maruyama O; Yamane T; Kuwana K; Kawaguchi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2732-5. PubMed ID: 24110292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical antithrombogenic properties by vibrational excitation of the impeller in a magnetically levitated centrifugal blood pump.
    Murashige T; Hijikata W
    Artif Organs; 2019 Sep; 43(9):849-859. PubMed ID: 31321785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.
    Kosaka R; Yasui K; Nishida M; Kawaguchi Y; Maruyama O; Yamane T
    Artif Organs; 2014 Sep; 38(9):818-22. PubMed ID: 25234763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of hemolysis in a centrifugal blood pump with hydrodynamic bearings and semi-open impeller.
    Kosaka R; Yamane T; Maruyama O; Nishida M; Yada T; Saito S; Hirai S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3982-5. PubMed ID: 18002872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump.
    Fang P; Du J; Yu S
    Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump.
    Yamane T; Maruyama O; Nishida M; Kosaka R; Sugiyama D; Miyamoto Y; Kawamura H; Kato T; Sano T; Okubo T; Sankai Y; Shigeta O; Tsutsui T
    J Artif Organs; 2007; 10(2):71-6. PubMed ID: 17574508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.
    Qian KX
    Cardiovasc Eng; 2007 Mar; 7(1):39-42. PubMed ID: 17380386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a Spiral Groove Geometry for Improvement of Hemolysis Level in a Hydrodynamically Levitated Centrifugal Blood Pump.
    Murashige T; Kosaka R; Sakota D; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Artif Organs; 2015 Aug; 39(8):710-4. PubMed ID: 26146791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.
    Masuzawa T; Ohta A; Tanaka N; Qian Y; Tsukiya T
    J Artif Organs; 2009; 12(3):150-9. PubMed ID: 19894088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel maglev pump with a combined magnetic bearing.
    Onuma H; Murakami M; Masuzawa T
    ASAIO J; 2005; 51(1):50-5. PubMed ID: 15745134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.
    Qian KX; Zeng P; Ru WM; Yuan HY; Feng ZG; Li L
    J Med Eng Technol; 2002; 26(1):36-8. PubMed ID: 11924845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device.
    Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S
    Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The helical flow pump with a hydrodynamic levitation impeller.
    Abe Y; Ishii K; Isoyama T; Saito I; Inoue Y; Ono T; Nakagawa H; Nakano E; Fukazawa K; Ishihara K; Fukunaga K; Ono M; Imachi K
    J Artif Organs; 2012 Dec; 15(4):331-40. PubMed ID: 22926404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.
    Okamoto E; Ishida Y; Yano T; Mitamura Y
    J Artif Organs; 2015 Jun; 18(2):181-4. PubMed ID: 25407124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.