These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 22254631)
1. Biomechanical consideration based on the unrestrained gait measurement of trans-femoral amputee with a prosthetic limb. Hayashi Y; Tsujiuchi N; Koizumi T; Matsuda Y; Tsuchiya Y Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1612-5. PubMed ID: 22254631 [TBL] [Abstract][Full Text] [Related]
2. Gait motion analysis in the unrestrained condition of trans-femoral amputee with a prosthetic limb. Hayashi Y; Tsujiuchi N; Koizumi T; Uno R; Matsuda Y; Tsuchiya Y; Inoue Y Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3040-3. PubMed ID: 23366566 [TBL] [Abstract][Full Text] [Related]
3. Development of a novel six-axis force/moment sensor attached to a prosthetic limb for the unrestrained gait measurement. Hayashi Y; Tsujiuchi N; Koizumi T; Oshima H; Tsuchiya Y Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2921-4. PubMed ID: 22254952 [TBL] [Abstract][Full Text] [Related]
4. [Dynamic loads at knee joint of trans-tibial amputee on different terrains]. Jia X; Zhang M; Fan Y; Wang R Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):221-4. PubMed ID: 15884522 [TBL] [Abstract][Full Text] [Related]
5. Weight bearing and velocity in trans-tibial and trans-femoral amputees. Jones ME; Bashford GM; Mann JM Prosthet Orthot Int; 1997 Dec; 21(3):183-6. PubMed ID: 9453090 [TBL] [Abstract][Full Text] [Related]
6. A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait. van der Linden ML; Solomonidis SE; Spence WD; Li N; Paul JP J Biomech; 1999 Sep; 32(9):877-89. PubMed ID: 10460124 [TBL] [Abstract][Full Text] [Related]
7. [Possibilities for optimizing prosthetic management of leg amputees using quantitative movement analysis]. Boenick U Biomed Tech (Berl); 1993 Jun; 38(6):144-52. PubMed ID: 8364145 [TBL] [Abstract][Full Text] [Related]
8. The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading. Ventura JD; Klute GK; Neptune RR Clin Biomech (Bristol); 2011 Mar; 26(3):298-303. PubMed ID: 21093131 [TBL] [Abstract][Full Text] [Related]
9. Finite element modelling of an energy-storing prosthetic foot during the stance phase of transtibial amputee gait. Bonnet X; Pillet H; Fodé P; Lavaste F; Skalli W Proc Inst Mech Eng H; 2012 Jan; 226(1):70-5. PubMed ID: 22888587 [TBL] [Abstract][Full Text] [Related]
10. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment. Fang L; Jia X; Wang R Clin Biomech (Bristol); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203 [TBL] [Abstract][Full Text] [Related]
11. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Schmalz T; Blumentritt S; Jarasch R Gait Posture; 2002 Dec; 16(3):255-63. PubMed ID: 12443950 [TBL] [Abstract][Full Text] [Related]
12. Gait Analysis of Transfemoral Amputees: Errors in Inverse Dynamics Are Substantial and Depend on Prosthetic Design. Dumas R; Branemark R; Frossard L IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):679-685. PubMed ID: 28113632 [TBL] [Abstract][Full Text] [Related]
13. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off. Weinert-Aplin RA; Howard D; Twiste M; Jarvis HL; Bennett AN; Baker RJ Med Eng Phys; 2017 Jan; 39():73-82. PubMed ID: 27836575 [TBL] [Abstract][Full Text] [Related]
14. Conventional patellar-tendon-bearing (PTB) socket/stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a trans-tibial amputee. Convery P; Buis AW Prosthet Orthot Int; 1998 Dec; 22(3):193-8. PubMed ID: 9881607 [TBL] [Abstract][Full Text] [Related]
15. [Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation]. Blumentritt S; Schmalz T; Jarasch R Orthopade; 2001 Mar; 30(3):161-8. PubMed ID: 11501007 [TBL] [Abstract][Full Text] [Related]
16. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system. Abdulhasan ZM; Scally AJ; Buckley JG Clin Biomech (Bristol); 2018 Aug; 57():35-41. PubMed ID: 29908391 [TBL] [Abstract][Full Text] [Related]
17. Static versus dynamic prosthetic weight bearing in elderly trans-tibial amputees. Jones ME; Steel JR; Bashford GM; Davidson IR Prosthet Orthot Int; 1997 Aug; 21(2):100-6. PubMed ID: 9285953 [TBL] [Abstract][Full Text] [Related]
18. Altered kinetic strategy for the control of swing limb elevation over obstacles in unilateral below-knee amputee gait. Hill SW; Patla AE; Ishac MG; Adkin AL; Supan TJ; Barth DG J Biomech; 1999 May; 32(5):545-9. PubMed ID: 10327009 [TBL] [Abstract][Full Text] [Related]
19. Modular motor control of the sound limb in gait of people with trans-femoral amputation. De Marchis C; Ranaldi S; Serrao M; Ranavolo A; Draicchio F; Lacquaniti F; Conforto S J Neuroeng Rehabil; 2019 Nov; 16(1):132. PubMed ID: 31694650 [TBL] [Abstract][Full Text] [Related]
20. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses. Furse A; Cleghorn W; Andrysek J IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]